
Quantum Dynamic Programming

Haowei Deng. Kaiyan Shi

April 2021

1 Introduction

Dynamic programming is a widely used computer programming method. There is a collection of
NP-hard problems(i.e. Traveling Salesman problem and Minimum set-cover problem) for which the
best classical algorithms are exponentially expensive dynamic programming solutions. For these
NP-hard problems, simply applying Grover’s quantum search achieves a quadratic speedup over
classical exhaustive search strategies. However, the naive exhaustive search is often not the fastest
classical algorithm for these NP-hard problems. For example, for the Travelling Salesman Problem
(TSP), exhaustive search over all possible routes runs in time O∗(n!) and simply applying Grover’s
quantum search speeds the search up to O∗(

√
n!). This is still lower than the fastest classical

algorithm based on dynamic programming [2] which runs in time O∗(2n).

Combining the quantum effects with classical problem-solving strategies for these NP-hard problems
and achieving a quantum speedup over the fastest classical algorithm is an open problem. Ambainis
et al. [1] proposed a divide-and-conquer idea with dynamic programming technique for some
NP-hard problems, including the Travelling Salesman Problem (TSP), Minimum Set Cover and
Hypercube Path. This idea can also be used in some other NP-hard problem including Graph-
coloring[13], Minimum Steiner Tree[11].

In this paper, we first discuss Ambainis’ idea base on several NP-hard problems. Then we discuss
applying this idea to some further NP-hard problems, including graph coloring, minimum clique
cover and minimum dominating set. We also compare the complexity of applying the different
quantum methods on these NP-hard problems and cases where new ideas are needed to utilize the
power of dynamic programming.

2 Previous work

For general NP-hard problem, Ambainis et al.[1] showed exponential-space exponential-time quan-
tum algorithm using QRAM[5]. In this section, we discuss Ambainis’ solution based on the Hamil-
tonian cycle problem, the Travelling Salesman Problem and the Minimum set cover problem.

2.1 Hamiltonian Cycle Problem

Hamiltonian Cycle problem is the special case of the Travelling Salesman problem. The Hamiltonian
Cycle problem is defined as
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• Hamiltonian cycle: For an undirected or directed graph, a cycle that visits each vertex exactly
once.

• Hamiltonian cycle problem: Given a graph G = (V,E), deciding whether it has a Hamiltonian
Cycle

For a graph S and two different vertices u, v in S, let a Boolean function f(S, u, v) be true iff there
is a simple path that goes through all vertices of S, starts at u and ends at v. Let |S| be the number
of vertices in S. When discussing about complexity, O∗ notation means

O∗(g(n)) = O(poly(n) ∗ g(n))

Ambainis’ algorithm first precomputes f(S, u, v) for all subgraph S ⊂ G such that |S| = n
4 +1 using

classical dynamic programming[]. The complexity this classical precomputation part is O∗(
(
n
n
4

)
) =

O∗(1.755n).

Then the algorithm runs Grover search all subgraph S ⊂ G such that n
2 + 1 and all vertices pair

u, v ∈ S and checks whether f(S, u, v) and f(G\S ∪ {u, v}, v, u) are both true. In this case a the
simple path that goes through all vertices in S (starts at u and ends at v) and the one in subgraph
G\S ∪ {u, v} (starts at v and ends at u) will construct a Hamiltonian cycle.

To calculate f(S, u, v) for |S| = n
2 + 1, the algorithm similarly runs another Grover’s search over

all subsets T of S such that |T | = n
4 + 1, u ∈ T, v /∈ T . For each T , search a vertex t ∈ T to check

whether f(T, u, t) and f((S\T )∪{t}, t, u) are both true. These result are known from the classical
precomputation part and only needs O(1) time. The first level search is searching for n

2 vertices

subgraph from G so there are
(
n
n
2

)
choices. Similarly the second level search has

(n
2
n
4

)
choices. So

the complexity of the quantum part is

O∗(

√(
n
n
2

)(n
2
n
4

)
) (1)

Then the total complexity of the whole algorithm is the sum of two parts.

O∗(1.755n +

√(
n
n
2

)(n
2
n
4

)
) = O∗(1.755n) (2)

The complexity is bounded by the classical precomputation part. This idea for Hamiltonian Cycle
problem can be extended to TSP easily and slightly optimized to O∗(1.728n) by making the classical
and quantum parts have the same complexity.

2.2 Travelling Salesman Problem

This idea for the Hamiltonian Cycle problem can be immediately extended for TSP by replacing
Grover’s search with quantum minimum finding. The TSP problem is that given a weighted graph
G, we need to find the length of the shortest simple cycle that visits each vertex. The fastest
classical algorithm for TSP is Bellman-Held-Karp algorithm[6] in time O(n22n). To solve TSP
with quantum method, the quantum minimum finding technique is needed

Theorem 2.1 (Quantum Minimum Finding). Let a1, ..., an be n integers, accessed by a procedure
P . There is a quantum algorithm that finds minni=1{ai} with success probability at least 2/3 using
O(
√
n) applications of P .
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Suppose that integer ai is given by the output of a subroutine Ai. If Ai can only returns the correct
result with probability at least 2/3, the procedure P can be implemented as O(log(n) repetitions
of each Ai, to reduce the error probability of each P call to O(

√
n). Then with probability at least

2/3, all the calls to P will be correct, and quantum minimum finding will also be correct with
probability at least 2/3, resulting in a total O(

√
nlog(n)) runtime.

Now let’s discribe Ambainis’ quantum algorithm for Travelling Salesman which uses ideas from
the Bellman-Held-Karp algorithm[6] which uses dynamic programming and runs in time O(n22n).
Let the given weighted graph be G = (V,E, ω) where |V | = n,E ⊂ V 2 and ω : E → N are the
edge weights. Let D = {(S, u, v)|S ⊂ V, u, v ∈ S} and a function f : D → N and f(S, u, v) is
the length of the shortest simple path in subgragh of G induced by S that starts in u, ends at
v and goes through all vertices in S. This function is similar to the function f in the algorithm
for the Hamiltonian Cycle problem. The only difference is that it returns the length of the simple
path rather than only its existence. In the quantum algorithm of Hamiltonian Cycle problem,
the classical precomputation part is a bit longer than the quantum search part and causes the
complexity of the whole algorithm larger than the quantum part. To optimize this, Ambainis et
al.[1] introduce a parameter α ∈ (0, 1/3] to control the size of the subgraph that computed in the
classical precomputation part. The whole algorithm is shown as below:

a. For a subgraph S ⊂ V , if |S| ≤ (1−α)n
4 + 1, the algorithm calculate f(S, u, v), u, v ∈ S by

classical dynamic programming and store them in the memory. Thus the complexity of the
classical part is O∗(

(
n

≤(1−α)n/4
)
) similar to the one of Hamiltonian Cycle problem.

b. Run quantum minimum finding over all subset S ⊂ V such that |S| = n
2 +1 to find the answer

of

min
S⊂V
|S|=n

2
+1

min
u,v∈S
u6=v

f(S, u, v) + f((V \S) ∪ {u, v}, v, u) (3)

This expression is similar to the the Grover search step in the algorithm of Hamiltonian
cycle problem except using quantum minimum finding instead. To calculate f(S, u, v) for
|S| = n

2 + 1, the algorithm runs quantum minimum finding for Eq 3 over all T ⊂ S such that
|T | = n

4 + 1. To calculate f(S, u, v) for |S| = n
4 + 1, run quantum minimum finding for Eq 3

over all T ⊂ S such that |T | = αn
4 + 1. For any S such that |S| = αn

4 + 1 or |S| = n
4 + 1, the

result is known from the classical precomputation. The complexity of this part is

O∗(

√(
n
n
2

)(n
2
n
4

)( n
4
αn
4

)
)

The total runtime of the algorithm is the sum of two parts. So the overall complexity is minimized
when both parts’ complexity are equal. The optimal choice for α then is approximately 0.055362.
The running time of the algorithm then is O∗(20.788595n) = O∗(1.727391n).

2.3 Minimum Set Cover

Another famous NP-complete problem that can be speeded up using the Ambainis’ idea is Min-
imum Set Cover. Minimum Set Cover problem is that given a collection S of subsets of an
universe U where |U| = n and |S| = m.

Let C ⊂ S be a minimum set cover of U . A set P is called a partial cover if P =
⋃
S∈C′ S for some

C ′ ⊂ C. Let f(U ,S) be the size of the minimum set cover of U using sets of S, a useful fact for the
minimum set cover problem is that
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Fact 1 (Partial Cover Partition).

If P is a partial cover of a minimum set cover of U using sets of S, then

f(U ,S) = f(P,S) + f(U\P, S)

This expression is similar to the expression in TSP problem for which the algorithm uses quantum
minimum finding to get the appropriate subset S. However, the difference is that such a P whose
size is exactly n

2 + 1 does not necessarily exist. So the algorithm for minimum set cover depends
on the follow useful fact

Fact 2 (Balanced Partial Cover Existence).

For some d = βn, 0 < β < 1, if |S| ≤ d for all sets S ∈ S, such a partial cover P using sets of S
that ||P | − n

2 | ≤
d
2 always exists.

Base on this fact, the minimum set cover problem can be solved with the similar idea in TSP with a
slight modification. Given the universe U and the collection S, the algorithm MinCover is below

a if |U| ≤ cN where N is the number of elements of U in the very first call of the algorithm
and c is a parameter, find the minimum set cover using classical dynamic programming and
return the answer

b Iterate over all subsets S ∈ S such that |S| ≥ d = βn, find MinCover(U\S, {T\S|T ∈
S, T\S 6= φ}) and store the results for each S.

c Remove all sets S such that |S| > d from S.

d Now all sets S ∈ S has |S| ≤ d. Run the same quantum minimum finding as in TSP for the
following expression to find the minimum result

f(U ,S) = min
P∈B

f(P,S) + f(U\P,S)

where B = {P ⊂ U| ||P | − n
2 | ≤

d
2

e Return the best solutions from Steps b and d.

Each time the algorithm is called recursively in the Step b, the number of elements in the universe
decreases for by d = βn. Hence the recursion depth is at most log1−βc = O(1) for some fixed β.
At each recursive call, the algorithm will enumerate poly(m,n) subsets from S. So Step a, b, c only
bring poly(m,n) additional multiplicative complexity. So the complexity of the whole algorithm is
still O∗(1.728n), the same as the algorithm for TSP.

2.4 Model

Ambainis’ algorithms work in the commonly used QRAM (quantum random access memory)[5]
model of computation which assumes quantum memory which can be accessed in a superposition.
QRAM has the property that any time-T classical algorithm that uses random access memory can
be invoked as a subroutine for a quantum algorithm in time O(T ). Thus it can be used for quantum
search with condition checking which require data stored in a random data memory. However,
while RAM is widely accepted model of classical computation, QRAM is sometimes criticized due
to the difficulty of implementation. Recently, Shimizu et al[13] proposed several quantum dynamic
programming algorithm not using QRAM. Can Ambainis’ idea be used without QRAM is an open
problem.
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3 Graph Coloring

In graph theory, graph coloring is a way of coloring the vertices of a graph G such that no two
adjacent vertices are of the same color. The minimum number of colors used to color G is called
the chromatic number of G, i.e. χ(G). Graph coloring problem is to calculate such χ(G).

3.1 Classical Computational Complexity

Let G = (V,E) be the target graph, and G[S] be an induced subgraph S of G. With χ(G) = 0 if
G is an empty graph, dynamic programming can be formulated as below:

χ(G[S]) = 1 + min
I∈MIS(G)

f(G[V \I]) (4)

where MIS(G) denotes the set of all maximal independent set of G. An independent set is a set of
vertices in a graph with no two of which are adjacent, and a maximal independent set of G is an
independent set that is not a subset of any other independent set. G[V \I] is a subgraph obtained
from G by deleting the vertices in I. There is a classical proof arguing that for G of |V | = n,
MIS(G) ≤ 3n/3 and also a classical algorithm enumerating all MISs with time O∗(3n/3) [4]. The
statement can be formally formulated below:

Theorem 3.1. The maximum number of t-MISs of n-vertex graph is

I(n, t) := bn/tc(bn/tc+1)t−n(bn/tc+ 1)n−bn/tct == O∗(2n/3).

Furthermore, there is a classical algorithm enumerating all t−MISs of n− vertex graph in time
O∗(I(n, t)) = O∗(2n/3).

Therefore the time complexity of the classical dynamic programming algorithm of recursively ap-
plying the above equation for all possible subgraphs is

n∑
s=0

(
n

s

)
O∗(3s/3) = O∗(1 + 31/3)n = O∗(2.4423n) (5)

3.2 Quantum Algorithm for Graph Coloring

There is one work strongly related to quantum dynamic programming of graph coloring [13]. They
present an exponential-space quantum algorithm computing the chromatic number with running
time O∗(1.9140n) using QRAM, and a polynomial-space quantum algorithm not using QRAM for
the graph 20-coloring problem with running time O∗(1.9575∗).

We are focusing on the QRAM case. Before reaching the algorithm with running time O∗(1.9140n),
Kazuya and Ryuhei adopt the idea of Ambainis et al’s [1] quantum dynamic programming algo-
rithms of TSP with Grover’s search on subprograms on graph coloring problems and give a relatively
naive algorithm.

Ambainis et al.’s general idea of quantum dynamic programming divides the original graph G =
(V,E) into two subgraphs G[S] and G[V \S] where S is some proper subset of V and has |S| = n

2 +1.
It computes the target function of G[S] and G[V \S] based on the construction of precomputed
solutions of some smaller subgraph G[S′] with |S| = n

4 + 1. Then it constructs the target function
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of G based on the solutions of G[S] and G[V \S] with the same method. To utilize this idea in the
graph coloring problem, we can rewrite the Equation 4 to

χ(G) = min
S
χ(G[S]) + χ(G[V \S]) (6)

Equation 4 is exactly the special case of Equation 6 (When S is one of proper independent set
in the maximal independent sets of G and we get χ(G[S]) = 1). If one assumes |S| is exactly
dn2 e or bn2 c, then one only need to run Grover’s quantum search over all S such that |S| = n

2 +
1 similar to Ambainis’ algorithm. Then one can apply the Ambainis et al’s quantum dynamic
programming straightforwardly and obtain an O∗(1.728n)-time quantum algorithm for the graph
coloring problem. Unfortunately, the balance partition S satisfying χ(G) = χ(G[S]) + χ(G[V \S])
does not always exist and we cannot utilize Ambainis et al’s idea directly. Hence, Kazuya and
Ryuhei states use the following useful fact

Fact 3 (Graph Partition).

Let a1, a2, ..., ak be positive integers and a1 ≥ ai,∀i = 1, 2, ..., k. Let n =
∑k

i=1 ai. Then, there
exists S ⊂ {2, ..., k} such that

∑
i∈S ai ≤ d

n
2 e and

∑
i∈{2,...,k}\S ai ≤ b

n
2 c.

Proof. Let t = max{j ∈ {2, ..., k}|
∑j

i=2 aj ≤ d
n
2 e}. Let S = {2, 3, ..., t}. Then

∑
i∈{2,...,k}\S ai =∑

i∈{t+1,t+2,...,k} ai ≤
∑

i∈{1,t+2,...,k} ai = n−(
∑

i∈S ai+at+1) ≤ bn2 c since
∑

i∈S ai+at+1 > dn2 e.

Given a graph G, suppose its minimum coloring divides it into m = χ(G) MISs s1, ..., sm and their
size are a1, ..., am. Let s1 be the maximum one over s1, ..., sm. The fact above suggests that if we
remove s1 from the graph G, the remained part of G can be divided into two parts constructed by
s2, ..., sm, both with size under half of the size of G. In this way, Ambainis’ algorithm can be kept
being applied.

Then from fact 3, Kazuya and Ryuhei come up with the following algorithm. They first precomputes
the chromatic number of all induced subgraphs with size at most n/4. This precomputation is based
on classical recursive formula, i.e. Equation 4 with MIS enumeration. And this is where dividing
happens.

They next argue in Section 3 in [13] that Byskov has shown an upper bound exists for the maximum
number of t-MISs of n-vertex graph, i.e.

I(n, t) := bn/tc(bn/tc+1)t−n(bn/tc+ 1)n−bn/tct, (7)

and this satisfies the condition for the application of Grover’s search. So they apply Grover’s seach
to Byskov’s algorithm of MIS enumeration, which gives time complexity O∗(3n/6).

Here, computed chromatic numbers are stored to QRAM. They apply Grover’s search again for
computing the minimum in Equation 4. Now note that the precomputation requires the running

time O∗
(∑n/4

i=1

(
n
i

)
3i/6

)
= O∗(1.8370n). Then, the main part of the algorithm computes χ(G) by

using the formula

χ(G) = 1 + min
I∈MIS(G)

min
S⊆V \I,|S|≤n/2,|V \I\S|≤n/2

{χ(G[S]) + χ(G[V \I\S])}

for χ(G) ≥ 3. The above formula is justified by Fact 3.

Now each graph at most has n/4 vertices, and they start the main part of the algorithm to do the
conquering. They utilize these precomputations to come up with the chromatic number for larger
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graphs. The running time of this conquering part is

O∗

(
3n/6

√(
n

n/2

)
3n/12

√(
n/2

n/4

))
= O∗(2.2134n).

Then the overall naive quantum dynamic programming algorithm for graph coloring is

O∗(2.2134n) +O∗(1.8370n) = O∗(2.2134n).

But we would like to point out that if we directly adopt their idea of enumerating MIS with running
time O∗31/6 in the classical dynamic programming algorithm, and keep all left, we would have graph
coloring solved in O∗((1 + 31/6)n) = O∗(2.2009n), which is smaller than the above time.

However later, Kazuya and Ryuhei improve their usage of divide-and-conquer algorithm described
above. Their improved algorithm (stated in Theorem 1 in [13]) searches all MISs of size t for
each t ∈ [1, n] separately and calculates each enumeration of t-MISs in time O∗(I(n, t)) (defined in
Equation 7), instead of directly using O∗(3n/6).

Finally, they give a precise argument showing this variation improves the running time from
O∗(2.2134n) to O∗(1.9140n).

4 Minimum Clique Cover

In graph theory, a clique cover of a given undirected graph is a partition of the vertices of the
graph into cliques, subsets of vertices within which every two vertices are adjacent. Any undirected
graph G = (V,E) has a clique cover since G can be covered with |V | cliques where each clique is a
single vertex in V . A minimum clique cover of an undirected graph is a clique cover that uses
as few cliques as possible. The minimum k for which a clique cover exists is called the clique cover
number of the given graph.

4.1 Classical Computational Complexity

The clique cover problem in computational complexity theory is the algorithmic problem of finding
a minimum clique cover, or finding a clique cover whose number of cliques is below a given threshold.
Finding a minimum clique cover is NP-hard, and its decision version is NP-complete. It was one of
Richard Karp’s original NP-complete 21 problems[8]. It has been proved that minimum clique cover
has the same complexity with the general graph coloring problem (chromatic number problem)[10].
Lawler[9] has shown that the chromatic number problem and so does the clique cover problem can
be solved in O(2.44n) by dynamic programming.

Let θ(G) be the clique cover number of an undirected graph G = (V,E) and |V | = n. Let θ(G) = 0
if G is empty. The key idea of solving clique cover problem with dynamic programming is using
the fact below

θ(G) = 1 + min
S∈I(G)

θ(G[V \S]) (8)

where I(G) is the family of vertices subset of all maximal cliques in G. A clique of G is maximal
if it is not a proper subset of a larger clique of G. G[V \I] is as defined above. For every subset
X ⊂ V , we can thus compute the clique cover number θ(G[X]) with Equation 8 recursively with
dynamic programming until X is empty.
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4.2 Quantum Algorithm for Clique Cover

Similar to the idea in graph coloring, the algorithm should be based on Equation 8. There also
exists a classical proof proving that there are at most O∗(2n/3) maximal cliques in a n-vertex graph
[12], and a classical algorithm (Bron-Kerbosch algorithm) that enumerating all maximal cliques in
On/3. Then we would like to investigate quantum speedup on maximal clique enumeration to find
the clique cover number of G.

There is a paper designing a quantum circuit to construct all maximal cliques using Grover’s search

[15]. Its construction realizes maximal cliques enumeration in time O∗(
√

n22n

M ), where M is the

total number of maximal cliques. Note that unless we know M , we would always take M = 1 for
upper bounds, and then it is the same as the quantum brute-force algorithm, i.e.

√
n22n.

We then run the above algorithm of maximal cliques enumeration for all induced subgraphs and
then finally compute the clique cover number based on Equation 8. The time complexity for this
naive idea is O(

∑n
k=1

(
n
k

)√
n22n) = O∗(2.414n).

For other ideas of quantum dynamic programming, as a maximal clique of G is a maximal inde-
pendent set of Ḡ, all maximal cliques can be enumerated in time O∗(3n/6) quantumly after finding
Ḡ which is poly-time. Time complexity for this idea is O∗(1.9140n), the same as Kazuya et al.’s
[13] (i.e. Ambainis et al.’s [1]) idea.

Also as χ(G) = θ(Ḡ), the cliue cover number problem for G can be directly reduced to the graph col-
oring problem for Ḡ, essentially the same as the idea above. So the time complexity is O∗(1.9140n)
for this idea too.

5 Dominating Set

A dominating set for a graph G = (V,E) is a subset D of V such that every vertex not in D
is adjacent to at least one member of D. The task of the dominating set problem is to find the
domination number γ(G), i.e. the cardinality of a minimal dominating set of G.

5.1 Classical Time Complexity

First note that the brute-force algorithm inspecting all vertex subsets is able to find γ(G) in running
time O(n2n). Current state-of-art work algorithm, using O(1.5048n) time was found in [14], who
also show that the number of minimum dominating sets can be computed in this time.

We now consider the time complexity of the classical dynamic programming algorithm. The method
is based on the following equation

γ(G) = 1 + min
S={g and its induced vertices |g∈V }

γ(G[V \S]). (9)

There are n such S and enumeration is within O(n). So the total time needed for the algorithm is
O(
∑n

k=1

(
n
k

)
k) = O(n2n).

5.2 Quantum Time Complexity

If we directly apply Grover’s algorithm on the brute-force algorithm, i.e. using Grover’s search
to search over all 2n subsets of vertices to find the smallest set of vertices that can dominate the
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graph, we will get the time complexity O∗(
√

2n) = O∗(1.414n).

Also if we consider applying Grover in the searching in Equation 9, we would reduce the searching
time over all S = {g and its induced vertices |g ∈ V } from O(n) to O(

√
n). But we still need to do

this step for all induced subgraphs with number of vertices k ∈ [1, n], which gives the whole time

complexity O
(∑n

k=1

(
n
k

)√
k
)

= O∗ (2n).

Besides the above two naive algorithms, we also consider applying Ambainis’ divide-and-conquer
dynamic programming ideas on the dominating set problem. Kann [7] has shown that the minimum
dominating set problem and the minimum set cover problem are equivalent under L-reductions.
From this fact and the corresponding construction, we can reduce the dominating set problem to
the minimum set cover problem in polynomial time. This gives a bound on the time complexity,
which is the same as that for the minimum set cover problem, O∗(1.728n).

So when we compare all these three algorithms, we observe that quantum brute-force algorithm has
the smallest time complexity. Directly applying Ambainis’ quantum dynamic programming idea
would not help improve the time complexity.

Note that minimum set cover problem is actually harder than the dominating set problem even if
they are equivalent under L-reductions. From the reduction of set covering to dominating set, for
a collection S with |S| = m and a universe U with |U | = n, it can be reduced in polynomial time
to a dominating set problem of G = (V,E) with |V | = m+ n.

Therefore, although we can reduce a minimum set cover problem to a dominating set problem, the
resulting brute-force algorithm for solving the dominating set problem will run in O∗(2m+n). Then

the quantum brute-force algorithm by applying Grover has time complexity O∗(2
m+n

2 ).

So the performance of Ambainis’ dynamic programming algorithm and quantum brute-force algo-
rithm depends on the value of m. By simple calculation, we would get that when m > 0.5782n,
Ambainis’ dynamic programming algorithm would win.

6 Cases where New Ideas are Needed

The dominating set problem described above is a case such that the direct application of divide-
and-conquer dynamic programming performs worse than direct application of Grover’s search on
classical brute-force algorithm.

The minimum vertex cover problem is also such problem. A vertex cover of a graph is a set of
vertices that includes at least one endpoint of every edge of the graph. Then a minimum vertex
cover is a vertex cover of the smallest possible size. The task of this problem is to find this vertex
cover.

There exists a polynomial time reduction from the minimum vertex cover problem to the dominating
set problem, and also a polynomial reduction to the minimum set cover problem. This raises the
same problem as discussed above and we need to adopt other quantum advantages and apply new
ideas in dynamic programming to make improvements.

Even though we only have shown two cases, we would like to propose that if a problem can
be reduced to the dominating set problem in polynomial time, then directly applying Ambainis’
dynamic programming idea will not win over quantum brute-force algorithms.
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7 Summary and Further Direction

In summary, we have reviewed Ambainis et al.’s divide and conquer dynamic programming idea
on several NP-hard problem, including the Hamiltonian cycle problem, the TSP and the minimum
set cover problem.

We then discuss about the application of this idea on some further NP-hard problem including
graph coloring, minimum clique cover and minimum dominating set. Ambainis et al.’s idea can
improve the time complexity for both the graph coloring problem [13] and the minimum clique
cover problem from O∗(2.4423n) classically to O∗(1.9140n) quantumly.

We also have compared the complexity of applying different quantum methods on these NP-hard
problems and proposed cases including the dominating set problem and the minimum vertex cover
problem where new ideas are needed to utilize the power of dynamic programming.

For further direction, one might give a more general divide-and-conquer dynamic programming
scheme in solving high-level graph numbering problems, i.e. chromatic number, clique cover num-
ber.

One could study how such divide and conquer dynamic programming idea can be applied to other
NP-hard problems outside graph problems. Also, there exists some work proposing new quantum
walks for subset-sum, which improves the time complexity [3]. Then similarly, one can further
study any other adaptions of quantum ideas in dynamic programming besides Grover.
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