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Concept Review

• A qubit can be described by 2-d vector:

𝛼 0 + 𝛽 1 =
𝛼
𝛽

• The state of an 𝑛-qubit system can be represented by 2𝑛-dim vector.

• The space of such states is a 2𝑛-dim Hilbert space.

• Unitary transformation 𝑈: 𝜑 → 𝑈 𝜑 .

• How a state time-evolve under a Hamiltonian? Schrödinger’s equation

𝑖
d

d𝑡
𝜓 𝑡 = 𝐻 𝑡 𝜓 𝑡 .



Variational Quantum Algorithm (VQA)

In classical machine learning, we have:

The model in ML can be a neural 

network running on a classical 

computer. 

In VQA, the model is a quantum 

circuit running on the quantum 

computer. 



Variational Quantum Algorithm (VQA)

• A simple VQA example

• Suppose the 𝑛-qubits quantum system’s initial state is 𝜑0 and we want to construct a 

unitary circuit 𝑈 which can transfer 𝜑0 to target 𝜑1 . 𝜑0 and 𝜑1 can be 

represented by 2𝑛-dim vector. Let

𝜑 𝜽 = 𝑈(𝜃1, … , 𝜃𝑚) 𝜑0 .

Anology: Consider a robot control problem. Suppose we have a robot at 

(0,0) and we want to drive it to a target position. The position of the robot 

can also be represented by a 2-dim vector.  

Suppose the driver is parametrized by: The angle 𝜃 between the moving 

direction and the x-axis and the driving distance 𝐿. We need to figure out 

𝜃, 𝐿 to move the robot to the target position.

• We need to figure out the parameters 𝜃1, … , 𝜃𝑚 which make 𝜑 𝜽 = 𝜑1 . 



• Cost Function: In robot control problem, when the robot is 
in 𝑥, 𝑦 , we can use its distance from the target position as 
the cost function which we want to minimize

𝐷 = (𝑥𝑡 − 𝑥)2+(𝑦𝑡 − 𝑦)2

Variational Quantum Algorithm (VQA)

• In VQA, when our circuit generate a state 𝜑 𝜽 , we also want to evaluate 𝜑 𝜽 ’s 
distance from our target state 𝜑1 . The distance can be calculated as 

𝐷′ = 1 − ⟨𝜓1 𝜑 𝜽

• In VQA, we need to tune 𝜃1, … , 𝜃𝑚 to minimize this distance 𝐷′



Variational Quantum Algorithm (VQA)

Steps for this example VQA:

1. Run 𝑈(𝜃1, … , 𝜃𝑚) on 
quantum computer and get 
𝜑 𝜽

2. Evaluate 𝐷′, the distance 
between 𝜑 𝜽 and 𝜑1 .

3. Calculate the gradients of 
𝜃1, … , 𝜃𝑚 and tune them.



Variational Quantum Algorithm (VQA)

• In application (i.e. quantum chemical simulation), 𝑛 can be very large. Using 

classical model to simulate the evolution of a 2𝑛-dim vector ( 𝜑0 , 𝜑1 , 𝜑 𝜽 ) 

has 𝑂(2𝑛) complexity. Quantum computer can do this in 𝑂(poly(𝑛)).

• Why we need quantum computer?

• This example is exactly Variational Quantum Eigensolver (VQE), one of the 

most promising applications of quantum computing

• Circuit – based VQE

• Pulse – based VQE



Variational Quantum Eigensolver



Variational Quantum Eigensolver (VQE) [PA14]

• What is VQE?

• a hybrid quantum-classical algorithm

• aim to find the lowest eigenvalue of a given Hamiltonian

• Why VQE? 

• beneficial for (quantum) systems whose dimension of the problem space grows exponentially

• applicable on Noisy Intermediate-Scale Quantum (NISQ) devices

• current devices have a lot of noise and have restriction in circuit depth

• a lot of quantum algorithms are not applicable

• usage in quantum chemistry, one of the most promising applications of quantum computing

• Connection with Differentiable Programming

• optimizer requires gradient calculation



VQE Diagram Illustration 

A hybrid quantum-classical algorithm

where differentiable programming 

might makes effects



Variational Quantum Eigensolver (VQE) 

• Problem (Core Task): Solve the ground state (energy) of any molecular Hamiltonian ෡𝐻.

• Input: Some molecular Hamiltonian ෡𝐻

• Approach: 

• Prepare a parameterized wave function  ansatz on a quantum computer.

• Adopt classical optimization methods (e.g. gradient descent) to adjust θ to minimize the 
expectation value 

• Output:

• Minimized expectation value, expected to be the ground state enegy

• , expected to be the ground state

Theoretical foundation of VQE: Rayleign-Ritz variational principle



Variational Quantum Eigensolver (VQE) 

• Problem (Reduced Task): Finding the smallest eigenvalue 𝜆min of a discretized
Hamiltonian 𝐻 and its corresponding eigenvector .

• Input: Some discretized Hamiltonian  𝐻

• Approach: 

• Prepare a parameterized ansatz on a quantum computer.

• Adopt classical optimization methods (e.g. gradient descent) to adjust θ to minimize the 
expectation value 

• Output:

• Minimized expectation value, expected to be 𝜆min

• , ecpected to be

Tranformation from ෡𝑯 to 𝑯 :

The corresponding Hamiltonian 𝐻 of ෡𝐻 should be expressed as a weighted sum of Pauli spin operators 

{𝜎𝑥, 𝜎𝑦, 𝜎𝑧} such that the information can be processed on a quantum computer, 

where 𝜎𝑗
(𝑘)

∈ {𝐼, 𝜎𝑥, 𝜎𝑦, 𝜎𝑧} and 𝑀 stands for qubit number.



VQE Example - Hydrogen Molecule 𝐻2

1. Construct 𝐻 for 𝐻2 from exisiting packages like openfermion:

2. Build a quantum neural network QNN to prepare the wave function ansatz

3. Setting loss function to be minimized is the expectation value,  

• This is a 4-qubit quantum circuit 

template with 𝐷 layers. 

• The dotted frame in the figure 

denotes a single layer.

• Exemplary circuit, 𝑅𝑦 can be 

replaced with 𝑅𝑥, 𝑅𝑧 etc.



4. Set up the parameters of the model and start training the quantum neural network

VQE Example - Hydrogen Molecule 𝐻2



VQE and QAOA

• VQE, QAOA ∈ VQA

• Application

• QAOA: combinatorial optimization

• VQE: quantum chemistry

➢ target Hamiltonian comes from molecular Hamiltonian.

• Circuit

• QAOA: related to the target Hamiltonian H

• VQE: customized circuit, can be independent of H

➢ QAOA circuit can also be used.

QAOA circuit

From my understanding, those 

Hamiltonians are interchangable.



VQE Diagram Illustration 

A hybrid quantum-classical algorithm

where differentiable programming 

might makes effects



Calculating gradient using quantum circuits

Numerical Differentiation

Automatic differentiation -

Backpropagation

• Not clear how 

intermediate derivatives 

could be stored and 

reused inside of a 

quantum computation

• No computing graph

Automatic differentiation

Qiskit Gradient Framework

Symbolic Differentiation

To get the gradient of a 

quantum program, the key 

idea is to construct some new 

programs to compute the 

gradients of the original one.



Calculating gradient using quantum circuits

• Loss function is

where 𝜽 = [𝜽𝟏, 𝜽𝟐, . . . , 𝜽𝒏] is a list of trainable parameters in the circuit. 

• Goal is to find



Finite Difference Method

• Numerical Differentiation

• Main Idea

• The error of the derivative of a function 𝑓(𝑥) tends to zero as ℎ tends to zero:

• By choosing a sufficiently small ℎ, we can get a good approximation of the derivative.

• For example, for the central finite difference method, the gradient of the loss fnction is

• Advantage

• no need to build extra circuits or using extra qubits

• Disadvantage

• only get an estimation of the gradient

• high errors of near-term quantum devices



Parameter Shift Rules

• Original parameter shift rule 

• restriction: 𝑈(𝜃) is a single-parameter gate.

• restriction: 𝑈(𝜃) can be written as 𝑒−𝑖𝑎𝜃𝐺, where 𝐺 has two unique 
eigenvalues 𝜆1 and 𝜆2.

• parameter-shift rule to find its gradient

where 𝑟 =
𝑎

2
(𝜆2 − 𝜆1).

• Advantage

• no need to build extra circuits or using extra qubits as well

• analytical gradient

• Disadvantage

• restrictions



Parameter Shift Rules Diagram Illustration

The “parameter shift rule” in the larger context of hybrid optimization.

A quantum node can compute derivatives of its outputs with respect to gate parameters by running the 

original circuit twice, but with a shift in the parameter in question.

In the diagram

• 𝜇 = 𝜃

• 𝑠 =
𝜋

4𝑟



Parameter Shift Rules

Overview of existing and new parameter-shift rules for first-order univariate 

derivatives as Venn diagram on the space of quantum gates.[WD21]

History of Parameter-Shift Rules:

1. Two eigenvalues [LJ17, MK18, Schuld19]

2. Three eigenvalues [WD21, KJAA21]

3. More complicated gate structure - two eigenvalues

• stochastic parameter-shift rule [BLG21]

4. Equidistant eigenvalues [VJD18]

5. General parameter-shift rules [WD21, IART21]



Parameter Shift Rules

Overview of existing and new parameter-shift rules for first-order univariate 

derivatives as Venn diagram on the space of quantum gates.[WD21]

History of Parameter-Shift Rules:

• General parameter-shift rules [WD21, IART21]

• [WD21] derives new, general parameter-shift 

rules for single-parameter quantum gates. It 

also combines the general rule with the 

stochastic parameter-shift rule, to extend the 

framework to multi-parameter quantum 

gates. 



Linear Combiantion of Unitaries

• Write 𝑈(𝜽) as 𝑈1(𝜃1)𝑈2(𝜃2). . . 𝑈𝑚(𝜃𝑚)

• where 𝑈𝑖(𝜃𝑖) is one of the one-qubit (e.x. 𝑅𝑧) and two-qubit gates (e.x. 𝐶𝑅𝑧) and 
𝑚 is the total number of parameterized gates in the circuit 𝑈(𝜽)

• Get gradient of inividual parameter

• Single-qubit gate gradient, e.x. 𝑅𝑥, 𝑅𝑦, 𝑅𝑧

• Single-qubit gate gradient, e.x. 𝑈3(𝜃, 𝛷, 𝜆)

• some symbolic differentiation



• Get gradient of inividual parameter

• Two-qubit gate gradient - control rotation gates e.x. 𝐶𝑅𝑥

• Two-qubit gate gradient - rotation gates e.x. 𝑅𝑥𝑥

Linear Combiantion of Unitaries

cannot be 

represented using 

one circuit



Gradient Review

• Numerical Differentiation

• Finite Difference Method

• pros: no need to build extra circuits or using extra qubits

• cons: estimation of gradients, high errors

• Symbolic Differentiation

• pros: analytic and exact  &   cons: exhaustive, not always computable

• Automatic Differentiation

• Parameter-Shift Rule

• pros: no need for extra circuits, exact and analytic  &  cons: ?

• Linear Combinations of Unitaries

• pros: the most general

• cons: needs ancilla qubit, takes long time to run on complex circuits



Pulse-Based Variational Quantum Eigensolver



Quantum Pulse Scedule

The envisioned quantum program representations and 
compilation procedures. Circuits are built and 
optimized first, and then are scheduled into pulse 
programs by using calibrated native gate definitions.

Recent framework enables advanced users to control 
the quantum system at the pulse level.

QubitsAnalog Pulse

Drive

An analog pulse is a control signal 
that can control the state of qubits in 
a quantum computer. The effect of 
each pulse depends on its shape, 
frequency and amplitude.



Quantum Pulse Scedule

i.e. Bell state circuit and its corresponding 

pulse sequence.

Gates in a quantum circuit are decomposed into 

several corresponding pulses.



Pulse-based VQE

Unlike the classical VQE which optimizes the rotation parameters of the single-qubit gates from the logical 

quantum circuit, pulse-based VQE directly takes the pulse parameters as the optimization parameters to 

find the minimal loss value



• The quantum circuit model hides the underlying physical implementation of gates and 
measurements on a quantum computer.

• Pulse-Based optimization focuses on the program closer to the hardware than circuit-
level optimization. 

• Extracting the highest performance out of quantum hardware requires the ability to 
craft a pulse-level instruction schedule, which cannot be done within the standard 
circuit model [3].

• Quantum Optimal Control: Control the quantum system with highly efficient means 
(i.e. with analog pulse).

Why Pulse-Based Optimization



• Suppose we want to effect a state-to-state transfer 

• In quantum control we look to prepare some specific quantum state, effect some state-
to-state transfer, or effect some transformation (or gate) on a quantum system. A 
quantum state can be represented by a vector in the 2𝑛-dim Hilbert space. 

• i.e. 
1

2
( 00 + |11⟩).

Quantum Optimal Control

• Analogy: Recall the robot control problem. We have a 

robot at (0,0) and we want to drive it to a target position. 

The position of the robot can also be represented by a 2-

dim vector.

𝜑0 → 𝜑1



• We can use the analog pulse as control signal to drive the state from 𝜑0 to 𝜑1 . 

Quantum Optimal Control

• So this leads to a question: given a specific quantum system with known time-

independent dynamics generator and set of externally controllable fields for which 

the interaction can be described by control dynamics generators:

• What is the shape of the control pulse required to achieve?

• GRadient Ascent Pulse Engineering (GRAPE) has been proposed to solve this 
problem.



GRadient Ascent Pulse Engineering (GRAPE)

where 𝐻0 is the drift Hamiltonian and the 𝐻𝑗 are the control Hamiltonians. The 𝑢𝑗 are time varying 

amplitude functions for the specific control. 

For quantum system, the dynamics generators of the system are Hamiltonians           . The dynamics of 

the system are governed by Schrödingers equation

The combined Hamiltonian for the system is given by

Gradient ascent algorithm can be used to determine a set of 𝑢𝑗 that will drive our system from 𝜑0 to 𝜑1 . 

In robot control problem, we usually have some dynamics generators to make the robot move.



GRadient Ascent Pulse Engineering (GRAPE)

• In the hardware implementation, Time allowed for the system to evolve T is split into M timeslots 
(typically these are of equal duration). The combined Hamiltonian can then be approximated as

If the objective is state-to-state transfer, then X0 = 𝜑0 and X𝑡𝑎𝑟𝑔 = 𝜑1

The evolution up to timeslot 𝑡𝑘 is 

𝑘 is a timeslot index and 𝑡𝑘 is the evolution time at the start of the timeslot where 𝑡 locates, 

and 𝑢𝑗𝑘 is the amplitude of control 𝑗 throughout timeslot 𝑘. Then the time evolution operator 𝑋

within timeslot 𝑘 can be calculated as 



GRadient Ascent Pulse Engineering (GRAPE)

A figure of merit or fidelity 𝑓𝑃𝑆𝑈 is some measure of how close the evolution X(T) is to the target 𝑋𝑡𝑎𝑟𝑔 , 

based on the control amplitudes 𝑢𝑗𝑘 in the timeslots. It can be calculated by

Where 𝑑 is the dimension of the system.

As there are now 𝑁 × 𝑀 variables (𝑢𝑗𝑘 in ) and the fidelity 𝑓 to

maximize, then the problem becomes a finite multi-variable optimization problem, and we can

solve this problem with gradient method.

How can we get the gradient for 𝑢𝑗𝑘 ?



Evaluate the Gradient in Pulse-level Control

Circuit-Level Pulse-Level

Numerical

Differentiation

High errors of near-term quantum devices 

can make it unfeasible

Automatic

Differentiation 

through 

backpropagation

Need to store and reuse the intermediate derivatives. Hard in 

quantum computing since measurement will impact the overall 

computation.

New Strategy Parameter-shift rule

Linear combination rule

Can we apply these rules to Pulse-level control directly?



Evaluating the Gradient in Pulse-level Control

T

Naive way: divide the evolution time 𝑇 into lots 
of timeslot which have the same duration 𝑑𝑇. The 
amplitude for each control Hamiltonian in each 
timeslot is constant and can be regarded as a 
quantum gate. Circuit-level techniques(i.e. 
parameter shift, Linear combination ) can be 
applied directly.

dT

Drawback: Not scalable.  The number of timeslot 𝑑𝑇 which the evolution time 𝑇
divided into is usually very large(much larger than a equivalent quantum circuit).   

Need a better rule to calculate the pulse sequence’s gradient.
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