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1 Introduction

Variational Quantum Eigensolver (VQE) is a popular quantum algorithm for approximating

the ground state energy of molecules on Noisy Intermediate-Scale Quantum (NISQ) computers.

VQE is mainly used to estimate the minimum eigenvalue of a given Hamiltonian and find its

ground state. For near-term quantum computers, critical gate errors, decoherence, and poor

connectivity limit the depth of quantum circuits. However, the VQE algorithm can work with

low-depth quantum circuits. Hence, the VQE algorithm is considered an ideal candidate to

utilize NISQ devices to solve real-world problems.

In this project, we study the VQE algorithm at the pulse level, which we call pulse-based VQE.

Unlike the classical VQE which optimizes the rotation parameters of the single-qubit gates

from the logical quantum circuit, pulse-based VQE directly takes the pulse parameters as the

optimization parameters to find the minimal loss value (i.e. ground state energy). The following

figure shows the difference between the pulse-based VQE and the standard VQE:

Figure 1: Difference between circuit-base VQE and pulse-base VQE.

ctrl-VQE [4] has shown the benefit of skipping the circuit step and optimizing the pulses to drive
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the state directly. [1] also shows that Extracting the highest performance from quantum hardware

requires the ability to craft a pulse-level instruction schedule, which cannot be done within the

standard circuit model. A common way to implement a pulse-based VQE is to parametrize the

pulse schedule and use gradient descent to train the schedule until it provides the desired result.

The gradients for each parameter in the pulse schedule are needed to apply the gradient descent

method. Previous works [2, 3, 6] calculate the gradients by using finite difference or analytical

difference by simulating the quantum evolution with a classical simulator. On the one hand, the

high errors of near-term quantum devices can make it unfeasible to use finite difference formulas

to approximate the gradient of a circuit. On the other hand, simulating the quantum evolution

with a classical simulator is not scalable since the complexity is exponentially related to the

number of qubits.

To handle these shortcomings, we need to calculate the gradients for all parameters and ensure

that we can implement this calculation process in a quantum computer. In this project, we

figure out a new method to parametrize the pulse schedule for VQE. We also figure out a scalable

method to calculate the exact gradients of the parameters in this control pulses parametrization

under some assumptions.

2 Background

2.1 Basic Quantum Computation

As a classical bit has a state - either 0 or 1 - a qubit also has a state. Two possible sates

for a qubit are the states |0〉 and |1〉. A qubit can also be represented in the form of a linear

combination of states, often called superposition:

|ψ〉 = α |0〉+ β |1〉 ,

where α and β are complex numbers.

For multiple qubits, as one of the four postulates of quantum mechanics, we usually use tensor

products to put them together.

Postulate 1. [5] The state space of a composite physical system is the tensor product of the

state spaces of the component physical systems. Moreover, if we have systems numbered 1 through

n, and system number i is prepared in the state |ψi〉, then the joint state of the total system is

|ψi〉 ⊗ |ψ2〉 ⊗ . . .⊗ |ψn〉.

Another postulate describes how the quantum states of a closed quantum system at two different

times are related.

Postulate 2. [5] The evolution of a closed quantum system is described by a unitary transfor-

mation. That is, the state |ψ〉 of the system at time t1 is related to the state |ψ′〉 of the system

at time t2 by a unitary operator U which depends only on the times t1 and t2,

|ψ′〉 = U |ψ〉 .
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Figure 2: Variational Quantum Eigensolver Flow Chart

For more details on background knowledge of quantum computation, we refer readers to [5] as

a good resource for quantum computation and quantum information.

2.2 Variational Quantum Eigensolver

The Variational Quantum Eigensolver (VQE) is a flagship quantum/classical hybrid algorithm

for near-term quantum computers. It aims to find the minimum eigenvalue of a given matrix

and so is widely adopted in quantum chemistry to find the ground state of a given system.

Given a Hamiltonian Ĥ which describes a molecule system, and an parameterized circuit U(~θ)

for the problem which defines learnable parameters (~θ) to optimize. VQE works as presented in

Figure 2.2, and also as described in the following:

1. It first transforms the given Hamiltonian into a discretized Hamiltonian H consisting of

Pauli spin operators. This procedure is usually performed under Jordan-Wigner transfor-

mation.

2. It then prepares the initial state, which is usually all 0 state, |ϕ0〉 = |0〉⊗n, where n

represents the number of qubits needed for the molecule simulation. It also samples random

initial parameters ~θ to be plugged into the parameterized circuit. The output state would

be

|ϕ〉 = U(~θ) |φ0〉 .

3. It uses current parameters ~θ, repeatedly execute the circuit, to minimize the objective

function,

E(~θ) = 〈ϕ(~θ)|H |ϕ(~θ)〉 .
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4. It checks convergence. If the computed E(~θ) is optimized until convergence, exit and

output the value. Otherwise, it updates ~θ through classical gradient descent methods and

repeats the previous step.

3 Related Work

The Variational Quantum Eigensolver was first proposed in [3], and became a hot area of

research since then. The VQE is believed to be one of the most promising examples of Noisy

Intermediate-Scale Quantum Computing (NISQ) algorithms as it is relatively robust against

of noise and errors caused by current hardware. But it is still hard to implement VQE with

deep circuits as ansatz for optimization due to finite coherence times and frequent gate errors.

Detailed work on minimizing ansatz circuit depth, maximizing accuracy etc. can be found in [6].

Although there are numerous works on the traditional VQE, few of them study the construction

when the gate circuit is removed. Pulse-based VQE with gates removed has been adopted in [4].

Under such construction, the parameterized gate circuit has been replaced by a prameterized

laboratory-frame parameterized pulse sequence, to drive the initial state to the target. Both of

their method and our method have used analytic gradient in the gradient descent optimization.

The parameterization method of ours is different than theirs. The parameterization method

used in [4] is similar to the Gradient Ascent Pulse Engineering (GRAPE) algorithm [2], a widely

used optimal control technique. They set the amplitude of each pulse as a parameter, while we

assign a n-degree polynomial of time, i.e. n parameters as the amplitude for all pulses. So this

gives a better parameter complexity of our algorithm.

Industry companies also has adopted pulse-based VQE. Quanlse from Baidu Inc. has adopted it

using the same parameterization method as GRAPE and [4], but it uses finite difference method

for gradient calculation, which is less accurate theoretically and slower than analytic gradients.

4 Method

4.1 GRadient Ascent Pulse Engineering (GRAPE)

GRAPE is a quantum optimal control algorithm that aims to optimize the control pulse se-

quences through by making a piecewise constant approximation to the pulse amplitudes.

Assume the total time allowed for the system to evolve is T and it is split into M timeslots, where

it is assumed that the amplitude remains constant. So the Hamiltonian at time tk = k∆ = kT/M

can be written as:

H(tk) = H0 +

N∑
j=1

ujkHj , (1)
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where Hj represents the Hamiltonian of the controller, N is the total number of controllers used,

and ujk is the amplitude of the controller j during tk. If we only have one controller, then the

Hamiltonian becomes

H(tk) = H0 + ukH1. (2)

The time evolution operator within tk can be calculated as

Xk = e−iH(tk)∆t = e−i(ukH1+H0)∆t. (3)

Then the overall time evolution operators up to time T is

X(T ) = XM−1 . . . X1X0 =

0∏
k=M−1

Xk, (4)

and the state after the evolution would be

|ϕ〉 = X(T ) |ϕ0〉 . (5)

Suppose the observable is Ô. Then the cost function would be

E = 〈ϕ| Ô |ϕ〉 (6)

= 〈ϕ0|
M−1∏
k=0

eiH(tk)∆tÔ

0∏
k=M−1

e−iH(tk)∆t |ϕ0〉 . (7)

Therefore, with only one controller, Q qubits and M timeslots, we would have the parameter

complexity being Q ·M .

4.2 Poly-Parameterization

Given the initial state |ϕ0〉, evolution time T , we divide T into M timeslot, with the duration

of each timeslot being ∆t = T
M . Suppose we have a polynomial with degree n:

p(t) =

n∑
j=0

ajt
j (8)

In the kth timeslot, with tk = k∆t, the Hamiltonian of the system with only one controller can

be approximated as

H(tk) = H0 + p(tk)H1. (9)

The corresponding time evolution operator can be calculated as

Xk = e−iH(tk)∆t = e−i(p(tk)H1+H0)∆t (10)
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Then the evolution sequence up to time T and the cost function in the form of energy are

represented the same as in Equation 4 and 6.

With the polynomial parameterization method, with only one controller, Q qubits and n-degree

polynomial approximation of the pulse amplitude, the parameter complexity would be Q · n,

independent of the number of timeslots M . Normally the degree would smaller than the number

of timeslots, and so we earn some constant advantage over traditional parameterization used in

GRAPE.

4.3 Analytic Gradient Calculation

In this section, we calculate the corresponding analytic gradient of the energy with respect to

each parameter aj in the polynomial p(t), based on our poly-parameterization method. The

gradient can be represented as follows:

∂E

∂aj
= 〈ϕ0|

∂
(∏M−1

k=0 eiH(tk)dtÔ
∏0
k=M−1 e

−iH(tk)dt
)

∂aj
|ϕ0〉 (11)

= 〈ϕ0|
∂
(∏M−1

k=0 ei(H0+p(tk)H1)∆t
)

∂aj
Ô |ϕ〉+ 〈ϕ| Ô

∂
(∏0

k=M−1 e
−i(H0+p(tk)H1)∆t

)
∂aj

|ϕ0〉 (12)

We then first calculate the left hand side gradient,

∂
(∏M−1

k=0 ei(H0+p(tk)H1)∆t
)

∂aj
(13)

=

M−1∑
l=0

(
Πl−1
k=0e

i(H0+p(tk)H1)∆t

(
∂ei(H0+p(tl)H1)∆t

∂aj

)
ΠM−1
k=l+1e

i(H0+p(tk)H1)∆t

)
. (14)

The middle gradient can be calculated as follows:

∂ei(H0+p(tl)H1)∆t

∂aj
= i∆t

(
∂p(tl)

∂aj

)
H̄1e

i(H0+p(tl)H1)∆t, (15)

where H̄∆t =
∫∆t

0
ei(H0+p(tl)H1)τH1e

i(H0+p(tl)H1)τdτ . But for small ∆t � ‖p(tl)H1 + H0‖−1,

H̄1 ≈ H1. So the gradient can be reduced to

∂ei(H0+p(tl)H1)∆t

∂aj
= i∆t

(
∂p(tl)

∂aj

)
H1e

i(H0+p(tl)H1)∆t, (16)

= i∆t · tjlH1e
i(H0+p(tl)H1)∆t. (17)
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Then Equation 18 can be written as

∂
(∏M−1

k=0 ei(H0+p(tk)H1)∆t
)

∂aj
(18)

=

M−1∑
l=0

(
Πl−1
k=0e

i(H0+p(tk)H1)∆t
(
i∆t · tjlH1e

i(H0+p(tl)H1)∆t
)

ΠM−1
k=l+1e

i(H0+p(tk)H1)∆t
)

(19)

=

M−1∑
l=0

(
Πl−1
k=0e

i(H0+p(tk)H1)∆tH1ΠM−1
k=l e

i(H0+p(tk)H1)∆t · (i∆t · tjl )
)

(20)

Similar for the right hand side gradient in Equation 11,

∂E

∂aj
= 〈ϕ0|

M−1∑
l=0

(
Πl−1
k=0e

i(H0+p(tk)H1)∆tH1ΠM−1
k=l e

i(H0+p(tk)H1)∆t · (i∆t · tjl )
)
· Ô |ϕ〉 (21)

+ 〈ϕ| Ô ·
M−1∑
l=0

(
ΠM−1
k=l e

−i(H0+p(tk)H1)∆tH1Πl−1
k=0e

−i(H0+p(tk)H1)∆t · (−i∆t · tjl )
)
|ϕ0〉 (22)

=

M−1∑
l=0

i∆t · tjl
(
〈ϕ0|Πl−1

k=0e
iH(tk)∆tH1ΠM−1

k=l e
iH(tk)∆t · Ô |ϕ〉 − 〈ϕ| Ô ·ΠM−1

k=l e
−iH(tk)∆tH1Πl−1

k=0e
−iH(tk)∆t |ϕ0〉

)
(23)

There are some commutator relations we could use,

H1ΠM−1
k=l e

iH(tk)∆t =
[
H1,Π

M−1
k=l e

iH(tk)∆t
]

+ ΠM−1
k=l e

iH(tk)∆tH1 (24)

ΠM−1
k=l e

−iH(tk)∆tH1 =
[
ΠM−1
k=l e

−iH(tk)∆t, H1

]
+H1ΠM−1

k=l e
−iH(tk)∆t. (25)

As for the two commutators, if H1 commute with H0, i.e. [H1, H0] = 0, then [H1, H(tk)] = 0.

It then naturally follows that[
H1,Π

M−1
k=l e

iH(tk)∆t
]

=
[
ΠM−1
k=l e

−iH(tk)∆t, H1

]
= 0, (26)

based on the property of commutators that [A,B] = 0 implying [A, eB ] = 0.
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The partial gradient 11 can be simplified further given the above commutator relation,

∂E

∂aj
=

M−1∑
l=0

i∆t · tjl
[
〈ϕ0|Πl−1

k=0e
iH(tk)∆t

([
H1,Π

M−1
k=l e

iH(tk)∆t
]

+ ΠM−1
k=l e

iH(tk)∆tH1

)
· Ô |ϕ〉

(27)

− 〈ϕ| Ô ·
([

ΠM−1
k=l e

−iH(tk)∆t, H1

]
+H1ΠM−1

k=l e
−iH(tk)∆t

)
Πl−1
k=0e

−iH(tk)∆t |ϕ0〉
]

(28)

=

M−1∑
l=0

i∆t · tjl
(
〈ϕ0|ΠM−1

k=0 e
iH(tk)∆tH1 · Ô |ϕ〉 − 〈ϕ| Ô ·H1ΠM−1

k=0 e
−iH(tk)∆t |ϕ0〉

)
(29)

+

M−1∑
l=0

i∆t · tjl
(
〈ϕ0|Πl−1

k=0e
iH(tk)∆t

[
H1,Π

M−1
k=l e

iH(tk)∆t
]
· Ô |ϕ〉 (30)

− 〈ϕ| Ô ·
[
ΠM−1
k=l e

−iH(tk)∆t, H1

]
Πl−1
k=0e

−iH(tk)∆t |ϕ0〉
)

(31)

=

M−1∑
l=0

i∆t · tjl 〈ϕ| [H1, Ô] |ϕ〉+

M−1∑
l=0

i∆t · tjl
(
〈ϕ0|Πl−1

k=0e
iH(tk)∆t

[
H1,Π

M−1
k=l e

iH(tk)∆t
]
· Ô |ϕ〉

(32)

− 〈ϕ| Ô ·
[
ΠM−1
k=l e

−iH(tk)∆t, H1

]
Πl−1
k=0e

−iH(tk)∆t |ϕ0〉
)

(33)

If H0 and H1 commute, then based on Equation 26, we would have

∂E

∂aj
=

M−1∑
l=0

i∆t · tjl 〈ϕ| [H1, Ô] |ϕ〉 (34)

= 〈ϕ| [H1, Ô] |ϕ〉 i∆t
M−1∑
l=0

(l∆t)j (35)

= 〈ϕ| [H1, Ô] |ϕ〉 i (∆t)
j+1

M−1∑
l=0

lj , (36)

which can be used as the gradient in the optimization step.

Compared to finite difference method, which needs to run the whole pulse sequence twice for

gradient calculation with respect to each parameter, our gradient calculation only needs to run

the sequence once for gradients w.r.t. all parameters. This would decrease the computational

cost for gradient calculation from O(2M) to O(1).

However, such gradient calculation has some limitations in implementations. As described in

Section 4.2, we have only considered the case of only one controller, i.e. H1. Also to make the

easy formula in Equation 36 work, we require H0 and H1 commute. Those limitations restrict

applicable ansatz for pulse-based VQE to only a small range, like H0 = H1 = SigmaX.

5 Evaluation

We evaluate our differentiation method in Quanlse platform
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Quanlse is a cloud-based platform for quantum control and supports the pulse generation for ar-

bitrary single-qubit and two-qubit pulses. It provides toolkits for modeling real superconducting

quantum chips, simulating noisy quantum devices and dynamical evolution.

The evaluation task is to find the ground state energy of hydrogen molecule H2 with an atomic

interval of d=74pm and we need to determine the parameters vector ~θ that minimize the energy

E0. In specific, we construct an antsaz circuit to find the groud state energy of the target

Hamiltonian

targetHam = [

[ −0.042078976477822 , ’ i 0 ’ ] ,

[ 0 .177712874651399 , ’ z0 ’ ] ,

[ 0 .177712874651399 , ’ z1 ’ ] ,

[ −0.242742805131446 , ’ z2 ’ ] ,

[ −0.242742805131462 , ’ z3 ’ ] ,

[ 0 .170597383288005 , ’ z0 , z1 ’ ] ,

[ 0 .044750144015351 , ’ y0 , x1 , x2 , y3 ’ ] ,

[ −0.044750144015351 , ’ y0 , y1 , x2 , x3 ’ ] ,

[ −0.044750144015351 , ’ x0 , x1 , y2 , y3 ’ ] ,

[ 0 .044750144015351 , ’ x0 , y1 , y2 , x3 ’ ] ,

[ 0 .122933050561837 , ’ z0 , z2 ’ ] ,

[ 0 .167683194577189 , ’ z0 , z3 ’ ] ,

[ 0 .167683194577189 , ’ z1 , z2 ’ ] ,

[ 0 .122933050561837 , ’ z1 , z3 ’ ] ,

[ 0 .176276408043195 , ’ z2 , z3 ’ ]

]

hMatrix = paul iStrToMatr ix ( targetHam , 4)

We evaluate three training methods:

1. Our differentiation method with suitable antsaz.

2. Numerical differentiation with the same antsaz.

3. Numerical differentiation with the best antsaz provided by Quanlse.

We run each method ten times with different random initial state and picks the average final

result. Tab When using the same ansatz, our method can achieve the same final loss as the

Method Ave. Loss Variance Ave. Runtime Ave. Iteration

Method 1 -0.5784 0.09741 6.1 min 44

Method 2 -0.5789 0.08388 11 min 42

Method 3 -1.1321 0.0121 9 min 35

Table 1: Evaluation result for three training method. Lower average loss and average runtime

is better.
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numerical differentiation method in half the time. But the restriction of our method limits that

we cannot use the best ansatz which can get the best result.

6 Conclusion and Further Work

We have proposed a different paramertization method “poly-parameterization”, to run pulse-

based VQE, i.e. parameterizing the pulse sequences via a polynomial. This parameterization

with a n-degree polynomial has reduced the number of parameters used by a constant factor,

from M ·Q to n ·Q, where M is the number of time segments and Q is the number of qubits.

We also have derived an analytic gradient formula, which can be used to optimize the pulse se-

quence in the pulse-based VQE. This gradient calculation method only needsO(1) computational

cost for running the pulse sequence, while ordinary finite difference method needs 2M = O(M).

However, this analytic gradient only works for a limited number of pulse sequence type, i.e. only

one controller and this controller commutes with the drift controller.

Implementations are also provided, which verifies that our proposed pulse-based VQE with

proposed analytic gradient is fast. But the results also show that we cannot reach the theoretical

minimum due to pulse sequence ansatz choices, which are limited by our gradient calculation

method.

For further work, we would like to try different parameterization methods which could fur-

ther reduce the parameter complexity, and optimistically easy to compute gradients. Advanced

numerical techniques can also be applied to approximate commutators in analytic gradient cal-

culations for a wider range of ansatz. Also instead of analytic gradient, sampling and simulation

techniques can also be considered in approximating gradients.

References

[1] Pranav Gokhale, Ali Javadi-Abhari, Nathan Earnest, Yunong Shi, and Frederic T Chong.

Optimized quantum compilation for near-term algorithms with openpulse. In 2020 53rd

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 186–

200. IEEE, 2020.

[2] Navin Khaneja, Timo Reiss, Cindie Kehlet, Thomas Schulte-Herbrüggen, and Steffen J
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