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1 Introduction.

In algebraic topology, homotopy group is a very important concept and is used to classify

topological spaces.

The equivalence class of a path f on a topological space X under the equivalence relation of

homotopy is called the homotopy class of f . All homotopy classes of loops f : Sk → X at the

basepoint x0 of X usually form a homotopy group. Topological spaces with different homotopy

groups are never equivalent (homeomorphic). Even if the statement is not vice versa, at least

to some extent, we can understand properties of certain spaces X from its homotopy groups,

which makes their investiagations meaningful.

Also to probe a space X, we sometimes look at maps from S1 → X. When we fix a basepoint

x0 ∈ X, we can define the loop space ΩX as the space of all maps from S1 to X taking the

north pole to be x0 (formal definition is given below). So loop spaces of X will provide ways to

investigate X.

Therefore, in this paper, we would like to combine these two important ways of understanding

a space X, i.e. to investigate the property of homotopy groups of loop spaces.

2 Preliminaries.

Let Y X be set of continuous mappings f : X → Y with compact-open topology, then we have

the following definitions used to investigate the homotopy group of a loop space.

Definition 1. (Compact-Open topology) Given the set Y X as defined above, the compact-open

topology on the space Y X of maps f : X → Y has a subbasis consisting of the sets M(K,U) of

mappings taking a compact set K ⊂ X to an open set U ⊂ Y .

The focus of this paper is the loop space which will be defined below in the form of Y X .

Definition 2. (Loop Space) Let (X,x0) be a based topological space. The (based) loop space of
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X is the topological space

ΩX := (X,x0)(S1,pt)

with compact-open topology.

In other words, as a set, ΩX is the set of all continuous maps from the based unit circle S1 to

(X,x0) such that the given basepoint of S1 is sent to x0. The basepoint of ΩX is the constant

loop at the basepoint x0.

Definitions below are related to the Loop-Suspension Adjunction which will be introduced in

the next section. They will lead to the kernel of the investigation.

Definition 3. (Reduced Suspension) Let (X,x0) be a based topological space. The reduced

suspension of X is

ΣX = X × I/(X × ∂I ∪ {x0} × I).

Definition 4. (Smash Product) The smash product X ∧ Y is defined to be the quotient

X × Y/X ∨ Y.

Definition 5. (One-point Compactification) The one-point compactification of X is the topo-

logical space X∗ defined as follows:

• The underlying set of X∗ is X ∪ {∞}.

• U ⊂ X∗ is open if and only if

1. U is an open subset of X, or

2. U = V ∪ {∞}, where V is an open subset of X and X − V is compact.

3 Loop-Suspension Adjunction.

Loop-Suspension Adjunction describes the corresponding relationship between basepoint-preserving

maps ΣX → Y and basepoint preserving maps X → ΩY :

[ΣX,Y ] = [X,ΩY ].

This adjunction is a categorical result which indicates that Σ and Ω are associated nicely with

each other: up to homotopy, maps out of suspension spaces is homeomorphic to maps in to loop

spaces.

It is the kernel of finding the homotopy groups of a loop space. We will prove this adjunction

applied to compactly generated spaces in the following steps.

First, for all theorems below, Let X,Y, Z all be topological spaces. The lemma below is the

most common understanding for reduced suspension of a topological space.

Lemma 1. Let X be a topological space, then the suspension of X is X ∧ S1.
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Pf/ We first view S1 as an interval with the end points identified, i.e. S1 = I/∂I, then we can

write S1 = I/∂I. It follows that

X ∧ S1 = X × S1/X ∨ S1

= X × I/X ∨ S1 ∪X × ∂I
= X × I/{x0} × I ∪X × ∂I
= ΣX

where x0 is the point on x0 identified with the point 0 ∼ 1 on S1 in the wedge product. �

Proposition 1, Lemma 2 and Theorem 1 given below are all discussed in Appendix A in [1],

which will give rise to the proof of the Loop-Suspension Adjunction.

Proposition 1 provides three useful properties of the compact-open topology from the view point

of algebraic topology.

Proposition 1. 1. The evaluation map e : XY × Y → X, e(f, y) = f(y), is continuous If Y

is locally compact.

2. If f : Y × Z → X is continuous then so is the map f̂ : Z → XY , f̂(z)(y) = f(y, z).

3. The converse to 2. holds when Y is locally compact. [1]

Pf/

1. For (f, y) ∈ XY ×Y , let U be an open neighbourhood of f(y) inX. As Y is locally compact,

there is a compact neighborhood K ⊂ Y of y such that f(K) ⊂ U by the continuity of

f . It follows that M(K,U)×K is an open neighbourhood of (f, y) in XY × Y such that

e : M(K,U) 7→ U. Therefore e is continuous.

2. Suppose f : Y × Z → X is continuous. To show that f̂ is continuous, it suffices to show

that for a subbasic set M(K,U) ⊂ XY , the set f̂−1(M(K,U)) = {z ∈ Z|f(K, z) ⊂ U} is

open in Z.

Consider z ∈ f̂−1(M(K,U)). By definition of compact-open topology, U is open in X.

Then by the continuity of f , f−1(U) is open in Y ×Z. Then by the definition of f and f̂ ,

f−1(U) is actually the open neighbourhood of the compact set K×{z} ∈ Y ×Z. It follows

that there exists an open set V ⊂ Y and an open set W ⊂ Z such that V ×W ⊂ f−1(U).

So W is an open neighbourhood of z in f−1(M(K,U)) and then f−1(M(K,U)) is open

in Z.

3. Note that f can be written as

e ◦ I× f̂ : Y × Z → Y ×XY → X.

When Y is locally compact, e is continuous by 1. and f̂ is continuous by assumption. So

f : Y × Z → X is continuous. �

Note that, part 2. and part 3. of Proposition 1 provide the point-set topology verifying the

Loop-Suspension Adjunction stated below. This is because they imply that a map Σ → Y is

3



Homotopy Group of a Loop Space Kaiyan Shi

continuous if and only if the associated map X → ΩY is continuous, and similarly for homotopis

of such maps.

We now prove the last step that would give the adjunction.

Lemma 2. Let X be a normal topological space, then for each closed set C and each open set

O containing C, there is another open set O′ containing C whose closure is contained in O.

Pf/ Let C be a closed set, and O be an open set in X. Then denote the complement of O as C ′

which is also a closed set. We now apply the normality property to C and C ′, there exists an

open set O′ containing C which is disjoint from an open set containing C ′. So the closure of O′

is contained in O. �

Theorem 1. The map XY×Z →
(
XY

)Z
, f 7→ f̂ is a homeomorphism if Y is locally compact

Hausdorff and Z is Hausdorff. [1]

Pf/ Proposition 1 part 2. implies that there is a well-defined function (map) from XY×Z →
(XY )Z sending f to f̂ and this function is injective. Part 3. of the proposition implies that this

function is surjective if Y is locally compact, since for each f̂ , there is a corresponding map f .

This gives that this map is a bijection, which is useful for later argument.

We first show that a subbabsis for XY×Z is formed by the sets M(A × B,U) with A and B

range over compact sets in Y and Z respectively and U ranges over open sets in X. Given a

compact set K ⊂ Y ×Z and a map f ∈M(K,U), let KY and KZ be the projections of K onto

Y and Z. Note that KY ×KZ is a compact Hausdorff product space as Y and Z and K are all

compact Hausdorff, and hence KY ×KZ is normal.

Applying Lemma 2, we let C = k ∈ K, and O be KY ×KZ∩f−1(U). It is obvious that O contains

k and k is both in KY ×KZ by the definition of the product space and in f−1(U) as f maps K

to U . It follows that there exists an open neighbourhood O′ ⊂ KY ×KZ of k, whose closure is

contained in O and then contained in f−1(U). We write this O′ as O′ = Vk ×Wk ⊂ KY ×KZ ,

and its closure is written as a compact neighborhood Ak ×Bk ⊂ f−1(U) of k in KY ×KZ .

Then the sets Vk ×Wk for varying k ∈ K form an open cover of the compact set K and so a

finite number of the products Ak × Bk cover K. It follows that focusing these finite products

Ak ×Bk, we have

f ∈ ∩kM(Ak ×Bk, U) ⊂M(K,U),

which indicates that the sets M(A×B,U) form a subbasis for XY×Z as desired.

Under the bijection argued above between XY×Z and (XY )Z , the sets M(A×B,U) correspond

to the sets M(B,M(A,U)), so it suffices to show the latter sets form a subbasis for (XY )Z to

prove the homeomorphism. We will prove a more general result here:

For any space Q, a subbasis for QZ is formed by the sets M(K,V ) as V ranges over

a subbasis for Q and K ranges over compact sets in Z, assuming that Z is Hausdorff.

Note that if we take Q = XY with subbaiss sets M(A,U), the general statement gives back

what we want.
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Let f ∈ M(K,U) such that K is compact in Z and U is open in Q. Write U = ∪αUalpha with

each Uα = ∩jVα,j of the given subbasis of Q. The cover of K by the open sets f−1(Uα) has a

finite subcovr, say by the open sets f−1(Ui). Since K is compact Hausdorff, it is normal and so

we can write K = ∪Ki with each Ki ⊂ f−1(Ui) compact. In other words, for each k ∈ K, it has

a compact neighborhood Kk contained in some f−1(Ui) with k ∈ f−1(Ui). So the compactness

of K implies that finitely many of these sets Kk cover K and we let Ki be the union of those

contained in f−1(Ui). Now we have

f ∈M(Ki, Ui) = M(Ki,∩jVij) = ∩jM(Ki, Vij),

for all i. Hence

f ∈ ∩i,jM(Ki, Vij) = ∩iM(Ki, Ui) ⊂M(K,U).

Since ∩i,jM(Ki, Vij) is a finite intersection, the sets M(K,V ) form a subbasis for QZ . �

Here comes the Loop-Suspension Adjunction. Sketchily speaking, two functors are said to form

an adjunction if they are dual to each other and Σ− Ω adjunction is an example of Eckmann-

Hilton duality.

Theorem 2. (Loop-Suspension Adjunction) If X is Hausdorff, then there is a homeomorphism

of sets

[ΣX,Y ] ∼= [X,ΩY ].

Pf/ We rewrite Theorem 1 by modifying their labels:

The map Y Z×X →
(
Y Z

)X
, f 7→ f̂ is a homeomorphism if Z is locally compact

Hausdorff and X is Hausdorff.

We now argue that there exists a natural homeomorphism

Y X∧Z ∼= Y X×Z .

There is clearly a bijection since for every continuous map f in Y X∧Z , there exists another

continuous map h in Y X×Z such that h = f ◦ g, where g is the quotient map from X × Z to

X ∧ Z. The bijection is open and continuous because both f and g are continuous and open.

So such homeomorphism exists.

Then by Theorem 1 and the above argument, we have(
Y Z

)X ∼= Y Z∧X

for Z locally compact Hausdorff and X Hausdorff.

Now we take Z = S1, which is locally compact Hausdorff, we have

[X,ΩY ] ≡ (ΩY )
X ≡

(
Y S

1
)X ∼= TS

1∧X = Y ΣX ≡ [ΣX,Y ].

�
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4 Homotopy Group.

After all the preparations above, this is the part to apply things above to find the homotopy

group for a loop space.

But before investigating it, we first investigate the reduced suspension of and smash products

between n-spheres Sn’s, which appear a lot when we describe homotopy groups.

Lemma 3. Let X be a commpact Hausdorff space and x0 be some arbitrary point in X, then

we have X homeomorphic to the one-point compactification of X with x0 removed, i.e.

X ∼= (X − {x0})∗.

Pf/ Consider the function

f : X −→ (X − x0)∗

such that f(x) = x for x 6= x0 and f(x0) =∞.

f is clearly a bijection as it is almost an identity function with one point in X mapped to its

‘replaced’ point in (X − x0)∗.

We now prove that f is an open map. Consider an open subset U in X. If x0 6∈ U , then U is

clearly open in X − {x0}, then by Definition 5, f(U) = U is also open in (X − x0)∗. If x0 ∈ U ,

then we write U = V ∪ {x0} ⊂ X and it follows that V is open in X − {x0}. We also have that

f(U) = f(V ) ∪ f(x0) = V ∪ {∞} ⊂ (X − {x0})∗. Then since X is Hausdorff compact and U

is open, we know that X − {x0} − V = X − U is compact. Therefore by Definition 5 again, U

is also open in (X − {x0})∗. So f is an open map as an open subset in X is always open in

(X − {x0})∗.

Finally we prove that f is continuous. Consider an open set U in (X−{x0})∗. If {∞} 6∈ U , then

f−1(U) = U , and by Definition 5, is open in X − {x0}. It follows that f−1(U) is open in X. If

{∞} ∈ U , then we write U = V ∪ {∞}, with V an open subset of X − {x0} and X − {x0} − V
compact. Then f−1(U) = f−1(V ) ∪ f−1(∞) = V ∪ {x0}. It is clear that V is then also open in

X, and so f−1(U) is also open in X.

Therefore f is a homeomorphism. �

Lemma 4. If X and Y are compact Hausdorff spaces then

X ∧ Y ∼= ((X − {x0})× (Y − {y0}))∗,

where x0 and y0 are chosen basepoints of X and Y respectively.

Pf/ Let X and Y be two compact Hausdorff spaces. Then it is clear that X × Y is compact

Hausdorff and X ∨ Y is a closed subset. It follows that every point is closed in X × Y/X ∨ Y .

So the equivalence relation is a closed relation. Thus X ∧ Y is a compact Hausdorff space as it

is the quotient of the compact Hausdorff space X × Y by a closed equivalence relation.
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Now let Z = (X − {x0})× (Y − {y0}), and we construct an inclusion that f : Z ↪→ X × Y and

a quotient map g : X × Y → X ∧ Y . We compose these two maps can get g ◦ f : Z → X ∧ Y .

Based on this composition, we consider a similar map

h : Z → X ∧ Y − {p},

where p is the basepoint where x0 gets adjoined with y0 in X ∨ Y .

To prove that X ∧ Y ∼= Z∗, i.e. X ∧ Y is a one-point compactification of Z, it suffices to prove

that h is a homeomophism.

We first argue that h is a continuous injection. f is naturally a continuous injection as it is almost

an identity function. Even if several points related to basepoints are removed from the domain,

they will not affect continuity and injectivity. We now consider g′ : X × Y → X ∧ Y − {p}.
It is again almost an identity function with the only ambiguous point removed, which gives an

injection. As for continuity, for an open set U in X ∧ Y − {p}, it is also open in X ∧ Y as the

smash product is compact Hausdorff. Then as the quotient map g is continuous, U is also open

in X × Y . So g′ is also a continuous injection and thus h = f ◦ g′ is a continuous injection.

We now argue h is surjective. For any points in the range of h, we can find corresponding points

in the domain because all points related to basepoints x0 and y0 are either removed or in some

equivalence class.

Finally we argue h is an open map. Let U ⊂ Z be open. Then f(U) = U is also open in X × Y
since Z is open in X × Y . Also g−1(g(U)) = U . Then as the quotient map g is continuous,

g(U) = g ◦ f(U) is open in X ∧Y . Since X ∧Y −{p} is open in X ∧Y , h(U) = g ◦ f(U) is open

in X ∧ Y − {p}.

Therefore h is a homeomorphism. �

Theorem 3. Let Sn be an n-sphere and Sm be a m-sphere, then we have the smash product of

these two spheres is homeomorphic to Sn+m, i.e.

Sm ∧ Sn ∼= Sm+n.

Pf/ Since Sm and Sn are both compact Hausdorff spaces, by Lemma 4, we have

Sm ∧ Sn ∼= ((Sm − {p})× (Sn − {q}))∗.

Note that an n-sphere with one point removed is homeomorphic to a real plane (i.e. Sn−{p} ∼=
Rn) by stereographic projection from the removed point.

Then it follows that

Sm ∧ Sn ∼= (Rm × Rn)∗

∼= (Rm+n)∗

∼= (Sm+n − {p})∗

∼= Sm+n,

where the last homeomorphism comes from Lemma 3. �
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Corollary 1. There exists an homeomorphism between the reduced suspension of the n-sphere

and the (n+ 1)-sphere

ΣSn ∼= Sn+1.

Pf/From Lemma 1 and Theorem 3, we have

ΣSn = Sn ∧ S1 = Sn+1.

�

We now consider the homotopy group of a loop space which almost directly follows from the

loop-suspension adjunction. Passing from a space to its loopspace has the effect of shifting

homotopy groups down a dimension. Formally,

Theorem 4. Let X be a based topological space, there is shift in homotopy groups of X and

ΩX, i.e.

πk(ΩX) = πk+1(X).

Pf/ By definition of homotopy groups of a topological space, we have

πk+1(X) := [Sk+1, X] = [ΣSk, X] = [Sk,ΩX] =: πk(ΩX),

where the first and last equality comes from the definition of homotopy groups. The second

ineqlaity comes from Theorem 1 and the third inequality comes from loop-suspension adjunction

(Sk is Hausdorff and so the adjunction can be applied). �

5 Application

Given a certain space X = S1, we can use Theorem 4 to find the homotopy group of its loop

space. Given that πk(X) = πk(S1) = Zδk1, we see

πk(ΩS1) = πk+1(S1) = Zδ(k+1)1 = Zδk0.

Specifically π0(ΩS1) = Z.

This makes sense because roughly speaking, each connected component in ΩS1 and Z is con-

tractible and there are countably many connected components in both spaces. So it is largely

possible that ΩS1 is homotopy equivalent to Z (It is actually correct with detailed proofs based

on constructing fibration and applying Whitehead’s theorem). From this point of view,

π0(ΩS1) = π0(Z) = Z,

where the last equality comes from the fact that π0(X) represents the set of path components

of X and Z is discrete.
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6 Conclusion

Through Loop-Suspension Adjunction, we have investigated an important property for the ho-

motopy group of a loop space ΩX:

πk+1(X) = πk(ΩX).

Using this property, to know the kth-homotopy group of ΩX, it suffices to know the (k + 1)th-

homotopy group of X.

Also note that for the homotopy group of a nth-loop space ΩnX, the result would be πk+n(X) =

πk(ΩnX) by applying Loop-Suspension Adjunction n times.

7 Acknowledgement

Great thanks to Mathematics Stack Exchange, math3ma for providing insights on this topic,

and to [1] for providing explanations and detailed proofs on some important theorems.

References

[1] A. Hatcher, Algebraic topology. Tsinghua University Press, 2005.

9

https://math.stackexchange.com/
https://www.math3ma.com/

	Introduction.
	Preliminaries.
	Loop-Suspension Adjunction.
	Homotopy Group.
	Application
	Conclusion
	Acknowledgement

