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ABSTRACT
The increasingly popular stochastic gradient descent with differen-

tial privacy tends to protect data privacy at the expense of model

accuracy. In this project, we investigate the possibility of incorpo-

rating curriculum learning into stochastic gradient descent with

differential privacy, so as to strike a better balance between data

privacy and model performance. We experiment different schedules

for noise injection, which we call noise curriculum; we also carry

out experiments that train a deep learning model with re-arranged

sample ordering, which is sample curriculum. Our current results

indicate the great potential of using noise curriculum for improve-

ments in accuracy but give little evidence that model performance

could benefit from sample curriculum.
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1 INTRODUCTION
In recent years, we have witnessed the rapid development of ma-

chine learning and along with that, people increasingly focus on

data privacy due to widespread applications of machine learning

models. More work now aim at designing machine learning models

under certain privacy guarantees. The mainstream optimization

technique in machine learning models is stochastic gradient descent

(SGD) and its variants[5, 24, 42]. SGD allows fast, stable, and almost

globally optimal convergence in many machine learning models.

Despite its effectiveness, SGD is prone to data leakage as the gra-

dient calculation can reveal a considerable amount of knowledge

of the training dataset, putting data privacy at risk. For example,

previous research demonstrates the possibility of recovering facial

images through a model-inversion attack [13].

Data privacy could be better protected with the introduction of

differential privacy (DP) [1, 10, 11]. By injecting noises to training

sample data or to the gradients computed in SGD, the training al-

gorithm could achieve 𝜖-differentially private guarantees, where 𝜖

is known as the privacy budget. When two neighboring datasets

that are only different by a single data point are used for train-

ing machine learning models, an 𝜖-differentially private algorithm

guarantees that the log-likelihood ratio of the model outputs are

at most 𝜖 . Intuitively, an adversary cannot make meaningful infer-

ences about if an individual data point takes part in the training or

not when 𝜖 is small. DP has demonstrated its effectiveness through

a broad range of deployments.

However, one common limitation of DP is that the preservation

of data privacy is achieved at the expense of deteriorated model

performance as a result of noise injection. To make up for the

accuracy loss, we propose to leverage curriculum learning (CL) [4,

12] in order to mitigate the adverse effects brought by the noise.

CL results in training strategies that organize training samples in a

meaningful order for enhancedmodel performance.We hypothesize

that training with curricula would better preserve accuracy given

a fixed privacy budget.

In this work, we propose a general differentially private SGD

training scheme which utilizes curriculum learning. We explore

two types of curricula, namely noise curriculum and sample cur-
riculum, which will be followed during training. We evaluate the

effectiveness of using these two curricula in differentially private

SGD trainings.

Noise curriculum. We conduct experiments if varying the noise

schedule in every epoch will affect model performance. The noise

schedule adjusts the magnitude of noise multiplier so that the noise

added to training samples follow a pre-defined mathematical func-

tion. We make attempts to use a wide range of functions to define

noise schedules, including but not limited to constant schedules,

linearly decaying or increasing schedules, quadratically decaying

or increasing schedules and so on. When carrying out these ex-

periments, we keep the default sample ordering in the original

implementation of SGD training.

Sample curriculum. We design a strategy that learns sample “dif-

ficulty levels” using a logistic regression model. We re-arrange the

sample ordering by the ascending samples’ losses produced by the

trained logistic regression model. We hypothesize that this “easy-to-

hard” arrangement of sample ordering would preserve differential

privacy while causing smaller accuracy loss in comparison to a

model where no privacy is guaranteed.

We have obtained the following major observations so far.

• The noise curriculum gives rise to marginally better model

performance on the validation set given a fixed amount of

privacy budget.

• Experiments of noise curriculum reveal a potential loga-

rithmic correlation between the privacy budget and the

model performance (in terms of validation accuracy).

• Current experimental results do not show any evidence

that sample curriculum is effective in improving model

prediction accuracy at a fixed privacy budget. We offer a

few possible reasons that explain this phenomenon.

2 RELATEDWORK
2.1 Stochastic Gradient Descent with

Differential Privacy
There are many works on differentially private machine learning.

Two main methods would be output perturbation [17, 19, 39] to add

noise to the output and target perturbation [18] to add noise to the

objective function. This area gains increasing popularity in the past

decade, beginning from differentially private stochastic gradient

descent(DP-SGD) [1, 3, 28] to privatize SGD. Then, many gradient-

based models have been studied under differential privacy, to name

1



DP-SGD

a few, [2, 31, 33, 34, 38, 40] and even Renyi differential privacy [7].

Most of the research in this area only focuses on constant noise

addition, and we discuss such work with adaptive noise addition in

Sec. 2.3.

2.2 Curriculum Learning
Humans tend to learn from simple examples first and then gradually

deepen their understandings to adapt to more complex examples.

Curriculum learning (CL) [4, 12] in neural network’s training is

inspired by this phenomenon, where training samples are arranged

in ascending orders by their difficulty levels and then fed into the

model. CL has gained increasing attention in machine learning and

computer vision. It is widely used in solving various real-world

problems [6, 14–16, 22, 30, 37]. A shared challenge in CL is how to

quantify the level of difficulty for each sample. In early attempts [4,

29], the curriculum is handcrafted and fixed during training. Self-

paced Learning framework [20] is proposed later to optimize the

curriculum jointly with the model parameters.

However, CL has not been widely used to improve the perfor-

mance of SGDwith DP. In our project, we plan to use CL to mitigate

the effects of privacy-preserving noises that cause accuracy drops,

while still maintaining differential privacy.

2.3 Curriculum Learning in Differentially
Private Stochastic Gradient Descent

Increasing attention in recent years is paid to developing differ-

entially private SGD with adaptive noise addition [8, 9, 27, 36].

All these work consider adding smaller noise during the training

procedure, but according to different noise schedules. Their noise

schedules either comes from naive arithmetic sequence [36], or

through sampling techniques [9] or from theoretical analysis on

the optimal schedule [8, 27].

Compared to those previous work, we propose several different

noise schedules for injection, covering basic function types. Also,

all these work measure their differential privacy budget accord-

ing to the composition theorem of standard differential privacy,

which means that they just linearly add privacy budgets spent in

each iteration. However, none of them analyze the privacy budget

through Renyi differential privacy, which allows a tighter analysis

of composite theorem [25]. We actually utilizes this new notion

and then transforms them into the standard differential privacy.

As described above, there is also no prior work on combining

differentially private SGD with only sample curriculum learning,

i.e. ordering samples according to their difficulty levels. Therefore,

Alg. 2 is the first differentially private SGD combining the notion

of both adaptive noise injection and normal curriculum learning

(sample curriculum).

3 PRELIMINARIES
3.1 Notations
Let D ⊂ X ×Y be a training set containing 𝑛 labelled samples and

𝐶 classes. Each sample is denoted by (𝑥𝑖 , 𝑦𝑖 ) where 𝑥𝑖 ∈ R𝑑 is the

features with dimensionality 𝑑 , and 𝑦𝑖 ∈ {1, 2, . . . ,𝐶} is the label.
A machine learning model is a function f (𝑥 ;𝜃 ) : X ↦→ Y pa-

rameterized by 𝜃 . A loss function between the model prediction

and true labels is used for backpropagation that gives the gradient

for optimization direction. The parameters are typically updated

iteratively by gradient descent. Usually a model will go through the

dataset for several passes for gradient updates. We refer each pass

as one epoch. The total number of epochs to train a model 𝑇 is a

hyper-parameter. The step size in each gradient update is known as

the learning rate. We denote the learning rate as 𝜂. Since the size of

a dataset could be very large, and it is more feasible to break down

the whole dataset into smaller batches and update the gradients

batch by batch. We use 𝐵 ⊂ D to denote one arbitrary batch.

3.2 Privacy Accounting
For differentially private SGD, one important step is to compute the

privacy budget (𝜖, 𝛿) of the whole training procedure. The privacy

accounting method can be summarized in the following three steps.

Step 1. Calculate Renyi divergence for each epoch in the training

procedure based [25, 26].

Step 2. Add all those divergence accumulated from each epoch and

calculate the corresponding overall Renyi privacy budget

(𝛼, 𝜖 ′).
Step 3. Transform the (𝛼, 𝜖 ′) Renyi differential privacy budget to

(𝜖, 𝛿) differential privacy budget.

Detailed explanations for each step are described below. We

write MNIST dataset as 𝑆 and its neighbouring dataset as 𝑆 ′.

Renyi divergence for each epoch. Consider the output distribution
of the 𝑖th epoch on 𝑆 and 𝑆 ′, denoted asM𝑖 (𝑆) andM𝑖 (𝑆 ′). The
Renyi divergence of order 𝛼 > 1 is calculated by definition as

𝐷𝛼 (M𝑖 (𝑆)∥M𝑖 (𝑆 ′)) =
1

𝛼 − 1

log E𝑥∼M𝑖 (𝑆′)

(
M𝑖 (𝑆) (𝑥)
M𝑖 (𝑆 ′) (𝑥)

)𝛼
.

Note that the noise addition step in Alg. 1 is actually a sampled

Gaussian mechanism, we then can compute the divergence for each

epoch based on [26]. It is proved in Sec. 3.1 of [26] that

E𝑥∼M𝑖 (𝑆′)

(
M𝑖 (𝑆) (𝑥)
M𝑖 (𝑆 ′) (𝑥)

)𝛼
≤ E𝑥∼M𝑖 (𝑆)

(
M𝑖 (𝑆) (𝑥)
M𝑖 (𝑆 ′) (𝑥)

)𝛼
for all 𝛼 ≥ 1.

As in Step 3., we need to calculate the Renyi privacy budget, which

is defined as the upper bound of the divergence, then the actual

divergence to calculate would be

𝐷𝛼 (M𝑖 (𝑆)∥M𝑖 (𝑆 ′)) =
1

𝛼 − 1

log E𝑥∼M𝑖 (𝑆)

(
M𝑖 (𝑆) (𝑥)
M𝑖 (𝑆 ′) (𝑥)

)𝛼
.

Such expectation value can be numerically stably calculated based

on the formula provided in Sec. 3.3 in [26], which would then give

the divergence of each epoch.

Linear accumulation of Renyi divergence and (𝛼, 𝜖 ′) Renyi differen-
tial privacy. With output distributions in epochM1 (𝑆), . . . ,M1 (𝑆),
andM1 (𝑆 ′), . . . ,M1 (𝑆 ′), we would have the output distributions

after 𝑇 epochs asM(𝑆)𝑇 =M1 (𝑆) × . . . ×M𝑇 (𝑆) andM(𝑆 ′)𝑇 =

M1 (𝑆 ′) × . . . ×M𝑇 (𝑆 ′), through composition of probability distri-

butions.

Then by the additivity of Renyi divergence [32], we would have

𝐷𝛼

(
M(𝑆)𝑇 ∥M(𝑆 ′)𝑇

)
=

𝑇∑︁
𝑖=1

𝐷𝛼

(
M𝑖 (𝑆)∥M𝑖 (𝑆 ′)

)
,
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for 𝛼 ∈ [0,∞] and 𝑇 < ∞, which demonstrates the linear accumu-

lation of Renyi divergence.

Then through the definition of Renyi differential privacy

D𝛼

(
M𝑖 (𝑆)∥M𝑖

(
𝑆 ′
) )
≤ 𝜖 ′𝑖 ,

we compute the overall Renyi differential privacy 𝜖 :

𝜖 ′ :=

⌈
𝐷𝛼

(
M(𝑆)𝑇 ∥M(𝑆 ′)𝑇

)⌉
≤

𝑇∑︁
𝑖=1

⌈
𝐷𝛼

(
M𝑖 (𝑆)∥M𝑖 (𝑆 ′)

)⌉
=

𝑖=𝑇∑︁
𝑖=1

𝜖 ′𝑖

(𝜖, 𝛿) differential privacy. With fixed 𝛿 , the privacy budget in

differential privacy can be directly computed from 𝜖 ′ obtained in

previous step, according to Thm. 3.1.

Theorem 3.1. (From RDP to (𝜖, 𝛿)-DP [25]) If 𝑓 is an (𝛼, 𝜖 ′)-RDP
mechanism, it also satisfies

(
𝜖 ′ + log 1/𝛿

𝛼−1
, 𝛿

)
-differential privacy for

any 0 < 𝛿 < 1.

3.3 Experimental Setup
MNIST dataset. MNIST [21] dataset contains handwritten digits

from 0 to 9. It consists of a training set of 60,000 examples, and a

validation set of 10,000 examples. Each image is a grey-level image

whose size is 28×28. MNIST has been a popular benchmark dataset

in research about differential privacy.

Model architecture. We train a simple convolutional neural net-

work (CNN) model on MNIST. The model composes two convolu-

tion layers, with max pooling after each convolutional layer and

relu activation function. A fully connected layer is used as the last

layer to produce logits for predictions.

Hyperparameters. We train the CNN model for 20 epochs for

quick evaluation, although further training could bring marginal

improvements in both training and validation accuracy. The batch

size is 600. We use constant learning rate 𝜂 = 0.15. We implement

the training procedure using Keras.

4 NOISE CURRICULUM
4.1 Algorithm
Under the noise curriculum, we investigate how the schedule of

noise addition affects the performance of differentially private SGD.

Instead of using a constant noise multiplier to scale the standard de-

viation of the noise addition in [1], we use different noise multiplier

in each epoch determined by the noise schedule function 𝐹𝑛𝑜𝑖𝑠𝑒 (𝑡).
The corresponding algorithm is formally presented in Alg. 1.

Note that in this design, sample ordering for each epoch is ran-

dom according to default SGD setting. Also for differentially private

SGD alone, we can just set 𝐹𝑛𝑜𝑖𝑠𝑒 (𝑡) = constant to reproduce DP-

SGD in [1].

For more comprehensive investigation, we consider both de-

creasing and increasing trends. For both trends, four functions with

typical shapes are considered: piecewise, linear and exponential

(logarithmic) and quadratic. The eight noise schedules are show

Algorithm 1 Training with noise curriculum

Input: Training data D = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . (𝑥𝑛, 𝑦𝑛)} in de-

fault sample ordering, number of epochs 𝑇 , noise schedule func-

tion 𝐹𝑛𝑜𝑖𝑠𝑒 (𝑡) given epoch 𝑡 , learning rate 𝜂, deep learning

model loss functionL(𝜃, 𝐵) = 1

|𝐵 |
∑
𝑥𝑖 ∈𝐵 L(𝜃, 𝑥𝑖 ), gradient norm

bound 𝐶

Output: Trained model 𝜃𝑇 , the overall privacy cost (𝜖, 𝛿) using a
privacy accounting method

𝜃0 ← random initialization ⊲ Beginning of step 2

for 𝑡 ∈ [1,𝑇 ] do
for 𝐵𝑖 ⊂ D ′ do ⊲ 𝐵𝑖 is one batch of samples, ∪𝑖𝐵𝑖 = D ′

ḡt (𝐵𝑖 ) ← gt (𝐵𝑖 )
max(1, ∥gt (𝐵𝑖 ) ∥2/𝐶) ⊲ Gradient clip

ḡt (𝐵𝑖 ) ← ḡt (𝐵𝑖 ) + N (0, 𝐹𝑛𝑜𝑖𝑠𝑒 (𝑡)2𝐶2I) ⊲ Add noise

𝜃𝑡+1 ← 𝜃𝑡 − 𝜂ḡt (𝐵𝑖 ) ⊲ Gradient descent

end for
end for

Figure 1: Decreasing noise schedules, with 𝑇 = 20, .

Figure 2: Increasing noise schedules, with 𝑇 = 20.

in Figure 1 and Figure 2. The corresponding formula are given in

Table 1 .

4.2 Experimental Results
Experiments under the proposed noise curriculum is conducted

with 20 epochs, i.e. 𝑇 = 20, and noise schedule presented in Fig. 1

and 2. Comparison between increasing and decreasing trends of

noise schedule is shown in Tab. 2. Note that in order for better and

clearer comparison, we add one more noise schedules, which is

“increasing exponential" with

(
1 − 𝑒𝑇−1−5

𝑒𝑇−1−1

)
𝑒𝑡 + 𝑒𝑇−1−5

𝑒𝑇−1−1

. Although its
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Trend Noise schedule 𝐹𝑛𝑜𝑖𝑠𝑒 (𝑡)

Decreasing

Exponential

(
5 − 1−5𝑒−(𝑇−1)

1−𝑒−(𝑇−1)

)
𝑒−𝑡 + 1−5𝑒−(𝑇−1)

1−𝑒−(𝑇−1)

Piecewise −
⌊

𝑡
𝑇 /5

⌋
+ 5

Linear − 4

𝑇−1
𝑡 + 5

Quadratic − 4

(𝑇−1)2 𝑡
2 + 5

Increasing

Logarithmic
4

log(𝑇+1) log(𝑡 + 1) + 1

Piecewise

⌊
𝑡

𝑇 /5

⌋
+ 1

Linear
4

𝑇−1
𝑡 + 1

Quadratic
4

(𝑇−1)2 𝑡
2 + 1

Table 1: Example noise schedules for noise multiplier be-
tween 1 and 5. “Decreasing” refers to a noise schedule whose
noise multiplier begins with 5 and gradually decreases to 1,
whereas “increasing” refers to a schedule increasing from 1
to 5.

Noise schedule Trend 𝜖 Validation accuracy

Exponential

decreasing 2.61 0.9572
increasing 2.61 0.9442

Piecewise

decreasing 1.64 0.9517
increasing 1.64 0.9252

Linear

decreasing 1.40 0.9463
increasing 1.40 0.9236

Quadratic

decreasing 1.32 0.9425
increasing 1.69 0.9313

Table 2: MNIST validation set accuracy comparison between
decreasingly and increasingly scheduled noise multipliers
under similar set of noise multipliers. These results show
a preliminary conclusion that decreasing noise curriculum
performs better than increasing noise curriculum.

shape is similar to “increasing quadratic", its privacy budget is the

same as “decreasing exponential" and therefore is worth reporting.

The resulting validation accuracy indicates that under similar set

of noise multipliers and similar privacy budget, it would be better

to add more noise first and gradually decrease. Possible reasons are

provided in Sec. 6.1.

Since integer constant noise multipliers 1 − 5 lead to different

overall privacy budget (𝜖, 𝛿 = 10
−5) from decreasingly scheduled

noise multipliers according to the privacy accounting method de-

scribed in Sec. 3.2. We adjust the constant noise multipliers to make

𝜖 between theirs and scheduled’s equal up to four decimal places.

Results under nearly equal privacy budgets’ cases are reported in

Fig. 3. We can see that validation accuracy under noise curricu-

lum outperforms that under constant noise (multipliers). Detailed

analysis will be presented in Sec 6.1.

𝜖 Noise type Validation accuracy

2.61

decreasing exponential 0.9572
constant 1.05 0.9529

1.64

decreasing piecewise 0.9517

constant 1.38 0.9565

1.40

decreasing linear 0.9463
constant 1.54 0.9434

1.32

decreasing quadratic 0.9425
constant 1.32 0.9419

Table 3: MNIST validation set accuracy comparison between
constant noise multipliers and decreasingly scheduled noise
multipliers under equal privacy budgets. These results show
a preliminary conclusion that noise curriculum usually leads
to accuracy gains.

5 SAMPLE CURRICULUM
Besides the noise curriculum, we also propose to investigate the

effectiveness of sample curriculum in differentially private SGD

training. In sample curriculum, we re-arrange training sample or-

dering so that the model is fed with easier data near the beginning

epoch and receives increasingly difficult samples afterwards. We

hypothesize this easy-to-hard curriculum could help the model

better adapt to noisy training samples.

5.1 Algorithm
We illustrate the idea of sample curriculum in Fig. 3. The algorithm

composes two two steps.

Step 1 Obtain sample ordering:We first use the training data to

train a multi-class logistic regression model 𝐿. The logistic

regression model is a less powerful model compared to the

CNN model we will use in the next stage and therefore,

it is a potentially good candidate to assess the difficulty

levels of each training sample. This step is illustrated in

Fig. 3 step 1.

Step 2 Train CNN with the new sample ordering: Shown in

Fig. 3 step 2, the same training data is then passed to the

trained logistic regression model to obtain the individual

losses for each training sample. We sort the samples by

their log loss in the logistic regression model. The binary

log loss is defined as

𝐶𝑜𝑠𝑡 (𝐿(𝑥), 𝑦) =
{
− log(𝐿(𝑥)) if 𝑦 = 1

− log(1 − 𝐿(𝑥)) if 𝑦 = 0

and for a multi-class logistic regression model, this loss is

generalized to

𝐶𝑜𝑠𝑡 (𝐿(𝑥), 𝑦) = −
𝐶∑︁
𝑖=1

𝑡𝑖 log(𝑝𝑖 ) (1)

where 𝐶 = 10 is the number of classes in MNIST (digits

0 to 9), 𝑡𝑖 ∈ {0, 1} is the ground truth label indicating the
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Figure 3: An illustration of the algorithm for sample curriculum in differentially private SGD training.

class of a sample (𝑡𝑖 = 1 if 𝑦 = 𝑖 otherwise 𝑡𝑖 = 0), and 𝑝𝑖
is the softmax probability for class 𝑖 .

The intuition behind this is that a sample with a greater

magnitude of loss indicates it is closer to the decision

boundary and thus harder for the model to make a predic-

tion; in contrast, a sample with a smaller loss indicates the

model could easily fit the data point. We then re-arrange

the ordering of training samples by ascending loss values.

We feed this new sequence of training data into the CNN

model for training. Finally, we test the model performance

on the validation set when the training completes.

We formally present the algorithm in Alg. 2. Note that in this

design, the sample ordering is fixed after we sort the training sam-

ples by their log loss produced by the logistic regression model.

We train the CNN model with the same sample ordering in each

epoch. In addition, the proposed sample curriculum is orthogonal

to the noise curriculum. The two curricula could possibly comple-

ment each other and bring enhanced model performance when

used simultaneously.

5.2 Experimental Results
We evaluate the effectiveness of the sample schedule by conducting

an experiment using the proposed sample curriculum only and

compare it with the default training with differential privacy. We

also run experiments using the sample curriculum combined with a

variety of noise schedules. These settings will indicate if combining

the two curricula is helpful in improving model validation accuracy.

We report our current experimental results in Table. 4. We see

that the proposed sample curriculum does not bring any improve-

ments since the setting without sample curriculum consistently

Algorithm 2 Training with sample curriculum

Input: Training data D = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . (𝑥𝑛, 𝑦𝑛)} in de-

fault sample ordering, a trained logistic regression model 𝐿,

number of epochs 𝑇 , noise schedule function 𝐹𝑛𝑜𝑖𝑠𝑒 (𝑡) given
epoch 𝑡 , learning rate 𝜂, deep learning model loss function

L(𝜃, 𝐵) = 1

|𝐵 |
∑
𝑥𝑖 ∈𝐵 L(𝜃, 𝑥𝑖 ), gradient norm bound 𝐶

Output: Trained model 𝜃𝑇 , the overall privacy cost (𝜖, 𝛿) using a
privacy accounting method

𝐶 ← ∅ ⊲ Beginning of step 1

for (𝑥𝑖 , 𝑦𝑖 ) ∈ D do
𝐶 ← 𝐶 ∪

{
((𝑥𝑖 , 𝑦𝑖 ),𝐶𝑜𝑠𝑡

(
𝐿(𝑥𝑎𝑖 , 𝑦𝑖 ))

)}
end for
Sort 𝐶 by 𝐶𝑜𝑠𝑡

(
𝐿(𝑥𝑎𝑖 , 𝑦𝑖 ))

)
in ascending order

D ′ = {(𝑥𝑎1
, 𝑦𝑎1
), (𝑥𝑎2

, 𝑦𝑎2
), . . . (𝑥𝑎𝑛 , 𝑦𝑎𝑛 )}

where ∀𝑖 < 𝑗,𝐶𝑜𝑠𝑡 (𝐿(𝑥𝑎𝑖 ), 𝑦𝑖 ) < 𝐶𝑜𝑠𝑡 (𝐿(𝑥𝑎 𝑗
), 𝑦 𝑗 )

𝜃0 ← random initialization ⊲ Beginning of step 2

for 𝑡 ∈ [1,𝑇 ] do
for 𝐵𝑖 ⊂ D ′ do ⊲ 𝐵𝑖 is one batch of samples, ∪𝑖𝐵𝑖 = D ′

gt (𝐵𝑖 ) ← ∇𝜃𝑡L(𝜃𝑡 , 𝐵𝑖 ) ⊲ Compute gradient

ḡt (𝐵𝑖 ) ← gt (𝐵𝑖 )
max(1, ∥gt (𝐵𝑖 ) ∥2/𝐶) ⊲ Gradient clip

ḡt (𝐵𝑖 ) ← ḡt (𝐵𝑖 ) + N (0, 𝐹𝑛𝑜𝑖𝑠𝑒 (𝑡)2𝐶2I) ⊲ Add noise

𝜃𝑡+1 ← 𝜃𝑡 − 𝜂ḡt (𝐵𝑖 ) ⊲ Gradient descent

end for
end for

outperforms the model trained with sample curriculum in all ex-

periments. We offer a few explanations that may have caused these

results in Sec. 6.3.
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Noise schedule Noise multiplier W/O SC𝑙𝑟 SC𝑙𝑟

Constant

0 0.9577 0.9470

1 0.9557 0.9469

2 0.9514 0.9332

3 0.9389 0.9260

4 0.9158 0.9075

5 0.9091 0.9003

Linear 5-1 0.9463 0.9437

Piecewise 5-1 0.9441 0.9356

Quadratic 5-1 0.9423 0.9382

Table 4: MNIST validation set accuracy when combining var-
ious noise schedules with the proposed sample curriculum
using logistic regression as the difficulty level metric (SC𝑙𝑟 ).
These results do not show that the tested sample curriculum
is helpful in improving validation accuracy given the same
privacy budget.

6 DISCUSSION
6.1 Effectiveness of Noise Curriculum
First it is indicated in Tab. 2 that validation accuracy is higher un-

der decreasing noise curriculum with the same privacy budget. We

could then conclude that decreasing noise curriculum outperforms

increasing noise curriculum. Possible reason behind such phenom-

enon could be that noise disturbance is more likely to affect the

performance in the end than at the early stage. With increasing

epochs, the trained model is closer to the optimal solution. So the

trained model would be more “delicate" in the end, and small noise

addition would not disturb it as much as large noise would, leading

to better performance.

Then through the comparison in Tab. 3 on constant noise and

(decreasing) noise curriculum, we observe that under fixed pri-

vacy budget, adding gradually decreased noise would lead to better

validation accuracy for “linear”, “quadratic” and “exponential”. How-

ever, we did not repeat our experiments for multiple times and the

number of epochs 𝑇 used are not enough to get convergence for

validation accuracy > 98%. So we can only have a preliminary

conclusion that the noise curriculum can improve the model per-

formance, under fixed privacy budget.

6.2 The Potential Correlation between 𝜖 and
Validation Accuracy

Throughout experiment, we also observe a logarithmic relationship

between privacy budget 𝜖 and validation accuracy, at least for rel-

atively large noise (noise multiplier is at least 1). The correlation

has been shown in Fig. 4. Note that the correlation is drawn in

log plot for better demonstration. It is shown that there exists a

relatively linear relationship between validation accuracy and log 𝜖 ,

especially for large noise addition, i.e. noise multiplier > 1.0. To

formally assess the linear relationship, we use pearson correlation

coefficient and its value is 0.848 with p-value 0.016. As the p-value

is lower than the conventional 5%, the coefficient can be consid-

ered as statistically significant. Therefore we can conclude that the

observed logarithmic relationship is valid.

1.0 0.5 0.0 0.5 1.0
log(epsilon)

0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98

va
l a
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constant_2.5
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Figure 4: A log plot of MNIST validation set accuracy versus
privacy budget 𝜖 obtained through the privacy accounting
method described in Sec. 3.2. These results can lead to a rough
result that for relatively large noise multiplier, i.e. > 1.0, the
validation accuracy is proportional to log 𝜖. The plot indicates
the best fitting line with confidence interval 0.95.

We ascribe such relationship to the stability of the optimal solu-

tion. With relatively smaller noise, the effects noise can bring are

diminishing. This means that the model is more likely to reach the

optimum early and then become stable. For example, for constant

noise multipliers 2.5 and 3.0, they might both reach some critical

accuracy level early. Then because it is normally slower to achieve

better accuracy after that level, the accuracy differences between

those two cases would not be as large as cases with larger noise.

Therefore the accuracy increases more slowly with smaller noise

added, which would give a logarithmic relationship.

However, we could also see that with smaller noisemultipliers, i.e.

noise multipliers approaching 1.0, the linearity between accuracy

and log 𝜖 is disappearing. We think this is also caused by the the

stability of the optimal solution. With absolutely small noise, the

found solution at 𝑇 = 20 might be very close to the optimal one,

and then it’s even harder for the loss function to decrease more. So

their accuracy is expected to be very likely to be very close to each

other and difference might be more influenced by the randomness,

instead of by real performance differences.

6.3 (In)effectiveness of Sample Curriculum
Our current experimental results do not show any evidence that

sample curriculum could improve model performance on the val-

idation set given a fixed privacy budget 𝜖 . We argue that several

possible factors could contribute to this phenomenon. More exper-

iments should be carried out using additional datasets and more

dynamic sample curriculum to reach a conclusion.

Reason 1: The proposed sample curriculum using a logistic regres-
sion model is not optimal. Our current sample curriculum relies on

the log loss from the logistic regression model. Since CNN models

extract features from data samples differently from how a logistic

regression model works, the log loss might not be able to reflect

the accurate “difficulty level” of a sample when making predictions

6
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using a CNN model. A potentially better alternative would be ar-

range the samples in a dynamic order using the CNN model’s cross

entropy loss before each epoch starts. The cross entropy loss is

defined as

L𝐶𝐸 = −
𝐶∑︁
𝑖=1

𝑡𝑖 log(𝑝𝑖 ) (2)

where 𝐶 = 10 is the number of classes in MNIST (digits 0 to 9),

𝑡𝑖 ∈ {0, 1} is the ground truth label indicating the class of a sample,

and 𝑝𝑖 is the softmax probability for class 𝑖 . Using the CNN model’s

loss as a metric to evaluate the samples’ difficulty level would allow

us to have a more dynamic sample ordering that vary in each epoch,

since the model gets updated throughout training. The dynamic

schedule could be more advantageous because the sample ordering

is more adaptive to the CNN model parameters.

Reason 2: The fixed ordering in each epoch adversely affects the per-
formance of SGD.. Previous research shows that the noise produced

by stochastic sampling in SGD contributes largely to its effective-

ness [23, 35, 41]. However, our current design of sample curriculum

uses the same sample ordering after step 1. The repeated, fixed

sample ordering for every epoch reduces the diversity of stochastic

noise in comparison to the original default training procedure. This

may have caused the deteriorated performance of the CNN model.

Reason 3: MNIST might be a too easy dataset to benefit from sample
curriculum. It is worth noting that the logistic regression model

could already perform quite well on the MNIST dataset, with train-

ing accuracy 0.9346 and validation accuracy 0.9256. The high accu-

racy imply that most samples would be classified as “easy” samples

by our design of sample curriculum. Thus, the resultant ordering

would only affect a small subset of the samples, which is not an

impactful change overall.

The above three reasons may have contributed to our negative

finding of the sample curriculum. Given that we only had the oppor-

tunity and resource to test one sample curriculum on one dataset, it

remains inconclusive as to whether sample curriculum could bring

improvements in model performance with a fixed privacy budget.

7 CONCLUSION AND FUTUREWORK
In this paper, we propose to use curriculum learning to improve

model performance on the validation set while preserving the same

level of privacy guarantee. We consider two orthogonal curricula,

namely noise curriculum and sample curriculum. The noise cur-

riculum dynamically change the magnitude of noise multiplier in

every epoch, resulting in higher validation accuracy than using a

constant noise schedule in most cases. The sample curriculum aims

to re-arrange sample orders in the training set based on their level

of difficulty for a model to fit, so that the model gets to learn easier

samples before they encounter the harder ones. We hypothesize

that these two curricula could each have their own schedule dur-

ing training and complement each other to bring improvements in

validation accuracy.

We conduct experiments for various noise schedules and one

sample curriculum depending on the output of a logistic regression

model for sample ordering. On one hand, we find that the noise

curriculum is beneficial as using it gives rise to marginally higher

validation accuracy. However, due to resource constraints, we need

to carry out additional runs of experiments to make sure these re-

sults are statistically significant. On the other hand, we do not have

any conclusion about the effectiveness of sample curriculum yet.

We suspect that there exists better curriculum design than using a

logistic regression model as an assessment of sample difficulty level.

Additionally, we find that it is necessary to perform experiments

using more complex and larger datasets than MNIST because the

difficulty levels of sample in MNIST are not evenly distributed.

Besides the observations on model performance, we also see

that there might be a logarithmic correlation between the privacy

budget 𝜖 and the validation accuracy. Our observation suggests

that there might be theoretical upper bound for validation accuracy

given the amount of noise we add in differentially private SGD

training. This bound would allow people to approximate a model’s

performance given the magnitude of noise multiplier without even

training and testing the model.

We thus propose the following for future research directions.

• Repeat the experiments on noise curriculum to make sure

that the gain in validation accuracy is consistent through-

out different settings. Ideally, there should be about 3 to 5

runs of each setting. Average values and standard devia-

tions should be reported for statistical significance.

• Design more dynamic and adaptive sample curriculum

based on the CNN model loss instead of the logistic regres-

sion model loss.

• Investigate the theoretical bound between the noise multi-

plier magnitude and the validation accuracy.
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