
Investigation on 1D Area Law and XXZ Model

A Thesis

Presented to

The Division of Mathematics and Natural Sciences

Reed College

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Arts

Kaiyan Shi

May 2020





Approved for the Division
(Mathematics and Computer Science)

Jamie Pommersheim Adam Groce





Acknowledgements

Thank you...

To my parents and grandparents, thank you very much for supporting me for over twenty

years.

To Professor Jamie Pommersheim, thank you for being my thesis advisor and providing me

constructive advice for my thesis. Thank you for leading me to quantum computation.

To Professor Adam Groce, thank you for guiding me to both computer science and research.

Thank you for being so supportive for these four years.

To all professors who have taught me at Reed and BSM, thank you for being role models

whom I would love to learn from. Thank you for all the encouragement and suggestions

given to me.

To all friends I have met at Reed and BSM, thank you for accompanying me for these won-

derful and colorful four years. Thank you for all the time studying and relaxing together.

To all friends I have met outside of Reed, thank you for always being with me for another

four years.





Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.1 Why study Area Law? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1: Introduction to Quantum Computation . . . . . . . . . . . . . . . 3

1.1 Quantum Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Composite Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The Schmidt Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Entanglement Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2: Introduction to Area Law . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Brief Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Proof of 1D Area Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 High-Level Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Prelimaries: AGSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.3 Good AGSP with good product state implies 1D area law . . . . . . 10

2.3.4 Good AGSP implies a good product state . . . . . . . . . . . . . . . 14

2.3.5 Construction of AGSP . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Discussion of Frustrated Hamiltonian . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Discussion of Degenerate Ground States . . . . . . . . . . . . . . . . . . . . 22

Chapter 3: Introduction to Quantum Models . . . . . . . . . . . . . . . . . . . 23

3.1 XXZ Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 XXZ-Variant Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 AKLT Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 4: Numerical Techniques to Study Physical Models . . . . . . . . . 27

4.1 Standard Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Quicker Construction based on Hamming Weights . . . . . . . . . . . . . . . 28

4.3 Construction by Density Matrix Renormalization Group . . . . . . . . . . . 31

4.3.1 Brief Introuction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.2 Single Enlargement and Truncation in DMRG . . . . . . . . . . . . . 32

4.3.3 The Infinite and Finite System DMRG . . . . . . . . . . . . . . . . . 37



Chapter 5: Area Law on Quantum Models . . . . . . . . . . . . . . . . . . . . 39

5.1 XXZ Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Entropy Entanglement vs. Position of the Cut . . . . . . . . . . . . . 39

5.1.2 Entropy Entanglement vs. Number of Qubits . . . . . . . . . . . . . 40

5.1.3 Schmidt Coefficients Value Distribution . . . . . . . . . . . . . . . . . 42

5.2 XXZ-Variant Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Entropy Entanglement vs. Number of Qubits . . . . . . . . . . . . . 46

5.3 AKLT Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.1 Entropy Entanglement vs. Number of Qubits . . . . . . . . . . . . . 47

Chapter 6: Quasi-Approximate Ground State Projector . . . . . . . . . . . . 49

6.1 Construction of QAGSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1.1 Frustration Free: a = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.2 Positive Ground State Energy: a > 0 . . . . . . . . . . . . . . . . . . 50

6.1.3 Negative Ground State Energy: a < 0 and |a| < b . . . . . . . . . . . 50

6.1.4 Negative Ground State Energy: a < 0 and |a| > b . . . . . . . . . . . 51

6.2 Ground State Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3 Schmidt Coefficients Value Distribution . . . . . . . . . . . . . . . . . . . . . 52

6.3.1 Theory on Number of Non-Zero Schmidt Coefficients . . . . . . . . . 52

6.3.2 Analysis on Schmidt Coefficients Value Distribution . . . . . . . . . . 54

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Possible Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Appendix A: Schmidt Coefficients Value Distribution for Larger ∆s . . . . 59

Appendix B: Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



List of Tables

4.1 Parameters for Implementation of Algorithm 3 . . . . . . . . . . . . . . . . . 29

6.1 t vs. n such that Kt is a QAGSP . . . . . . . . . . . . . . . . . . . . . . . . 51





List of Figures

2.1 A 1D quantum system with surface area = 1. . . . . . . . . . . . . . . . . . . . 8

2.2 A 1D quantum system with surface area = 2. . . . . . . . . . . . . . . . . . . . 8

2.3 The Schmidt Rank of Each Term across the Middle Cut. . . . . . . . . . . . . . 20

5.1 Entropy Entanglement vs. Position of the Cut for XXZ Model . . . . . . . . 40

5.2 Entropy Entanglement vs. Number of Qubits for XXZ Model with 1 < ∆ < 99 41

5.3 Entropy Entanglement vs. Number of Qubits for XXZ Model with ∆ −→∞ 41

5.4 Schmidt Coefficients Value Distribution for XXZ Model with ∆ = 5 . . . . . 42

5.5 The Slope of Schmidt Coefficients Value Distribution vs. Number of Qubits

for XXZ Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.6 The Slope of Schmidt Coefficients Value Distribution vs. Number of Qubits

for XXZ Model with ∆ = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.7 The Predicted and Real Slope of Schmidt Coefficients Value Distribution vs.

∆ for XXZ Model with n = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.8 Entropy Entanglement vs. Number of Qubits for XXZ Variant Model . . . . 46

5.9 Entropy Entanglement vs. Number of Qubits for AKLT Model . . . . . . . . 47

6.1 Entanglement Entropy vs. t for QAGSP of XXZ Model with ∆ = 5 . . . . . 52

6.2 Schmidt Coefficients Value Distribution of QAGSP for XXZ Model with ∆ = 5 54

6.3 The Slope of Schmidt Coefficients Value Distribution of QAGSP vs. t for

XXZ Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.4 The Slope of Schmidt Coefficients Value Distribution of QAGSP vs. n for

XXZ Model at t = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.1 Schmidt Coefficients Value Distribution for XXZ Model with ∆ = 15 . . . . 59

A.2 Schmidt Coefficients Value Distribution for XXZ Model with ∆ = 20 . . . . 60





Abstract

An area law is investigated and verified for the von Neumann entanglement entropy of ground

states in XXZ model, up to 14 qubits. The Schmidt coefficients of ground states of XXZ

model with up to 13 qubits appear to be distributed exponentially. Slopes are studied to

predict the slope of the Schmidt coefficients distribution of 14 qubits, and discrepancies are

within 0.1 for 2 ≤ ∆ ≤ 80. Quasi-approximate ground state projectors Kt that can map

random product states to ground states are also studied and Schmidt coefficients of Kt |ψ〉
also appear to be distributed exponentially up to 10 qubits.





Introduction

In this thesis, we investigate area laws in quantum computation, i.e. under certain condi-

tions, the amount of entanglement between a subsystem and its complement grows as the

surface area or the boundary and this is why these laws are called area laws. We focus on

one-dimensional(1D) area law, i.e. the amount of entanglement between a subsystem and

its complement is O(1) because in 1D, the surface area is a constant.

In Chapter 1, we introduce relevant quantum concepts that are useful in understanding 1D

area law, including von Neumann entropy which is the measurement of entanglement we use

in this thesis.

In Chapter 2, we review a combinatorial proof [3] of Hastings’ 1D area law [17] with more

detailed explanation. Chapter 3 introduces models we are interested in investigating 1D area

law on: the XXZ model, the XXZ Variant model and the AKLT model. Chapter 4 states

three algorithms which we can use to compute entanglement entropy of the ground state of

a certain model.

Then with all these preliminaries given, we investigate entanglement entropy growth for these

introduced models in Chapter 5 to verify the 1D area law. The distribution of Schmidt co-

efficients of the ground state is also studied to investigate the relationship between Schmidt

coefficients and number of qubits.

In the last chapter, Chapter 6, we introduce the Quasi-Approximate Ground Sate Projector

Kt, which aims to map a random product state |ψ〉 = |A〉 ⊗ |B〉 to the ground state of the

studied system. We then study Schmidt coefficients distribution of Kt |ψ〉 which might be

beneficial to deduce the Schmidt coefficients for larger number of qubits.

0.1 Why study Area Law?

In classical description, properties of a quantum system are in general associated with the

exponential of the number of qubits. But area laws provide a way to describe some properties

of a quantum system polynomially. In particular, area laws play an important role in the

study of the complexity of ground states in that they provide quantitative bounds on the

entanglement entropy, and such bounds do not grow exponentially with number of qubits.



2 Introduction

As for 1D area law, we would like to understand it well in order to get a better chance of

establishing area laws in higher dimensions, for which little is known.

It is necessary to study entanglement entropy for the 1D area law, but at the same time,

we also study the Schmidt coefficients value distribution. The reason is that for a system of

n qubits, if its ground state’s 2n Schmidt coefficients follow a certain distribution, then we

can obtain a formula for approximating the entanglement entropy. We can just generate 2n

numbers from the function and treat them as Schmidt coefficients to calculate entanglement

entropy. Calculation of entropy in this way will not involve generating the Hamiltonian

which costs a great deal of computation time. Also from a theoretical point of view, if the

distribution exists, we might obtain a different proof or a better understanding of existing

proofs. So such investigation would be very beneficial for investigating area law in general.

As for the QAGSP, given a product state |ψ〉, with t increases, Kt will map |ψ〉 gradually to

the ground state. We study the entropy convergence to see at which t, the entropy starts to

be stable. We also study the Schmidt coefficients value distribution to see how they change

with t and how we might use the relationship to predict Schmidt coefficients of Kt |ψ〉 with

t being very large, which is essentially the ground state. This also aims to save computation

time to investigate area law.



Chapter 1

Introduction to Quantum

Computation

The paper focuses on 1D area Law, which is a theorem about entanglement entropy of

quantum models. In this section, we introduce some basic concepts and knowledge about

quantum computation [22].

1.1 Quantum Bits

Just as a classical bit has a state - either 0 or 1 - a qubit also has a state. States a qubit

can have are the states |0〉 and |1〉, which can be considered just as different notations of

classical states. The difference is that a qubit can be in a state which is a superposition of

|0〉 and |1〉. We usually write a qubit in the following way:

|ψ〉 = α |0〉+ β |1〉 ,

where α and β are complex numbers. Also we always require qubit written in a normalized

form, i.e. |α|2 + |β|2 = 1.

1.2 Composite Systems

In this thesis, we are usually concerned with a composite quantum system made up of two

(or more distinct physical systems). The following postulate given in [22] describes how the

state space of a composite system is built up from the state spaces of the component systems:

Postulate 1.2.1. The state space of a composite physical system is the tensor product of

the component physical systems. Moreover, if we have systems numbered 1 through n, and

system number i is prepared in the state |ψi〉, then the joint state of the total system is

|ψ1〉 ⊗ |ψ2〉 ⊗ . . .⊗ |ψn〉 .

A bipartite system is a composite system consists of 2 components, and states in such

system usually denoted as |ψ1〉 ⊗ |ψ2〉 = |ψ1〉 |ψ2〉 . For our purpose, it is useful to mention
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a meaningful subscript notation to denote states and operators on different systems. Still

take the bipartite system as an example,

X1Y2 |ψ1〉 |ψ2〉 = (X ⊗ I) (I⊗ Y ) |ψ1〉 |ψ2〉
= (X ⊗ I) (I |ψ1〉 ⊗ Y |ψ2〉)
= XI |ψ1〉 ⊗ IY |ψ2〉
= X |ψ1〉 ⊗ Y |ψ2〉

where X and Y are some operators acting on a single qubit.

1.3 The Schmidt Decomposition

Here we give theorems that are useful for our investigation on 1D area law. Schmidt decom-

position is the basis of von Neumann entropy calculation and singular value decomposition is

useful for the proof and computation of Schmidt decomposition. So we will introduce these

two theorems here with their proofs.

Theorem 1.3.1. (Singular value decomposition) Let A be a square matrix. Then there exist

unitary matrices U and V , and diagonal matrix D with non-negative entries such that

A = UDV.

The diagonal elements of D are called the singular values of A.

Proof.

By the polar decomposition (Theorem 2.3 in [22]), A can be written in the form A = SJ , for

unitary S, and positive J . By the spectral theorem, J = TDT †, for unitary T and diagonal

D with non-negative entries. Setting U ≡ ST and V ≡ T † completes the proof.

End of proof.

We now introduce Schmdit decomposition, in which singular value decomposition is used.

Theorem 1.3.2. (Schmidt decomposition) Suppose |ψ〉 is a pure state of a composite system,

AB. Then there exist orthonormal states |iA〉 of system A and orthonormal states |iB〉 of

system B such that

|ψ〉 =
∑
i

λi |iA〉 |iB〉 ,

where λi are non-negative real numbers satisfying
∑

i λ
2
i = 1 known as Schmidt coefficients.

Proof.
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Let A and B be two systems of the same size, with |j〉 and |k〉 being their fixed orthonormal

bases for them respectively. Suppose |ψ〉 is a pure state of the composite system, A⊗B and

then it can be written

|ψ〉 =
∑
jk

ajk |j〉 |k〉 ,

for some matrix a of complex numbers ajk. By the singular value decomposition, a = udv,

where d is a diagonal matrix with non-negative elements, and u and v. Thus

|ψ〉 =
∑
ijk

ujidiivjk |j〉 |k〉 .

Defining |iA〉 ≡
∑

j uji |j〉, |iB〉 ≡
∑

k vik |k〉, and λi ≡ dii, we see that this gives

|ψ〉 =
∑
i

λi |iA〉 |iB〉 .

From the unitarity of u and the orthonomality of |j〉, we can see that {|iA〉} form an or-

thonormal set, and it is the similar argument for {|iB〉}.

End of proof.

Note that singular value decomposition is not unique. It is always possible to choose the

decomposition so that the singular values dii are in descending order. In this case, D (but not

always U and V ) is uniquely determined by A. It then follows that Schmidt decomposition

in general is also not unique, but {λi} = dii is unique.

We also define the Schmidt rank of an operator here, whose concepts are similar as Schmdit

numbers.

Definition 1. Given an operator A, its Schmidt rank is defined as the smallest integer m

such that A can be written in the form

A =
∑

1≤i≤m

Li ⊗Ri.

1.4 Entanglement Entropy

There is an entire field of research on how to measure entanglement entropy in quantum

many body systems. Von Neumann entropy is a frequently used way of measurement, and

it is also the one used in the proof of 1D area law which we will discuss in Section 2.

The von Neumann entropy is used to measure the entanglement between two components of

the system. Consider a composite quantum system consisting of A and B with the Hamil-

tonian H = HA ⊗HB, where a Hamiltonian is a matrix that represents the sum of kinetic
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energies of all qubits, together with the potential energy of the qubits associated with the

system.

We then take a state |ψAB〉. After Schmidt decomposing the state |ψAB〉 , we will get

|ψAB〉 =
∑
i

λi |iA〉 |iB〉 .

The von Neumann entropy between these bi-partitions is defined as

SA = SB = −
∑
i

λ2
i log λ2

i ,

which is a proper extension of the classical Shannon entropy [26] to the quantum case,



Chapter 2

Introduction to Area Law

2.1 Brief Introduction

Roughly, an area law states that for certain interesting classes of quantum many-body sys-

tems, the amount of entanglement between a subsystem and its complement grows as the

surface area or the boundary rather than the volume of the subsystem. In the literature, the

amount of entanglement entropy is typically formulated as entanglement entropy, i.e. the

von Neumann entropy of the reduced density matrix of the subsystem of interest.

As stated in the introduction, an area law plays an important role in the study of the

complexity of ground states in the way that it provides bounds quantitatively on the entan-

glement entropy. In 1D, such bound is irrelevant to the number of qubits. So here we would

like to give a review of the proof of 1D area law, which we will invesigate by examples in

Chapter 5.

2.2 Related Work

For the critical or gapless systems, many constructions are known to violate the area law.

([4], [16], [19], [24] and [10]). People usually show a high degree of quantum entanglement

in the ground state of a system to demonstrate ground state complexity and prove the com-

plexity of a class of problems. Therefore verifying that the area laws fail is also important

for the development the whole area. But in this thesis, we focus on the verification of the

area law.

In this section, we review a combinatorial proof [3] of Hastings’ 1D area law [17]. A more

understandable and structured explnation of the combinatorial proof of 1D area law is shown

in [15]. The structure of the proof I will show below mainly follows Section 7.5 in [15], but

will also combine some proofs in [6] and in several places, I will add more detailed explana-

tions.
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Figure 2.1: A 1D quantum system with sur-
face area = 1.

Figure 2.2: A 1D quantum system with sur-
face area = 2.

There is also some recent work which proves that the entanglement entropy of the ground

state of 2D frustration-free spin systems is upper bounded by O(L
5
3 ), where L is the number

of qubits in a subsystem [5].

2.3 Proof of 1D Area Law

2.3.1 High-Level Overview

We present Arad, Kitaev, Landau and Vazirani’s combinatorial proof [6] of Hastings’ [17] 1D

area law for gapped systems. Specifically, we consider a 1D chain of n qubits governed by

a gapped local Hamiltonian H. Any state of this quantum system lies in the Hilbert space

C2 ⊗ . . .⊗ C2.

A k−local Hamiltonian is the sum of Hamiltonians, each of which act non-trivially on at

most k adjacent qubits instead of all n qubits. The value of k we use in the rest of the

chapter depends on the subsystem we focus on.

By gapped, we mean that the difference between the smallest and second-smallest eigenvalues

of H is bounded below by a constant ε ≥ 0. We also assume that the ground state is unique

(See Section 2.5 for non-unique ground states).

In the following sections, we prove that there exists an area law for 1D gapped systems. By

definition the surface area of any contiguous region in a 1D system must be constant (i.e.

the number of ‘cutting points’ of lines, and so either 1 (Figure 2.1) or 2 (Figure 2.2)). It

follows that to prove 1D area law, it suffices to prove that

In the ground state, for any 1 ≤ i ≤ n, the entanglement entropy between particles 1, . . . , i

and particles i+ 1, . . . , n is bounded above by a constant.

Here, the entanglement entropy is defined as the von Neumann entropy of the reduced den-

sity matrix on particles 1, . . . , i. Without loss of generality, it suffices to fix an arbitrary cut

and prove the statement above; In the following parts, let C denote this cut.

Conceptually, the proof has two components. First, we show that there exists a product state

with respect to cut C which has reasonably good, i.e. constant, overlap with the ground state

of H. Second, we ‘transform’ such a product state to a much better approximation of the
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ground state without increasing the entanglement entropy across C too much. Both of these

components depend crucially on a theoretical construct called an Approximate Ground-Space

Project (AGSP), with good parameters.

For simplicity, in this review, we only focus on frustration-free Hamiltonians, whose ground

state energy is 0. The frustrated case is discussed is Section 2.4.

We proceed by the following procedures:

1. In Section 2.3.3, we prove that the existence of a good AGSP and a good product state,

i.e. non-trivial overlap with the ground state of H, implies the area law.

2. In Section 2.3.4, we prove that, actually, the existence of a good AGSP already implies

a good product state. Note that 1D Area Law is stated in Theorem 2.3.3.

3. In Section 2.3.5, we constructs a good AGSP, which finishes the 1D Area Law proof.

2.3.2 Prelimaries: AGSP

From Section 2.3.1, we would like to ”transform” a good product state to a much better

approximation of the ground state without increasing entanglement entropy C too much. In

other words, we want a projection to map |ψprod〉, with non-trivial overlap with the ground

state of Ĥ, to a good approximation of the ground state.

The obvious projection is |ψground〉 〈ψground|, such that when applied to |ψprod〉, we will obtain

〈ψground |ψprod〉 |ψground〉, a scaled-down version of the ground state. However, applying this

projection does not give a way to bound the amount of entanglement generated across cut

C. Therefore, we would like to construct an Approximate Ground-Space Project AGSP to

only approximately project onto the ground space; in return, we can obtain a rigorous bound

on how the entanglement grows with the application of AGSP.

Here we give the definiton of AGSP.

Definition 2. An operator K is said to be a (D,∆)-AGSP if the following conditions hold:

1. Ground space Invariance: For any ground state |Γ〉, K |Γ〉 = |Γ〉.

2. Shrinking: If
∣∣Γ⊥〉 is any state orthogonal to the ground space, then K

∣∣Γ⊥〉 is also

orthogonal to the ground space, and moreover ||K
∣∣Γ⊥〉 ||2 ≤ ∆.

3. Entanglement: The Schimidt rank of K across the given cut is at most D.

If there exists an AGSP with small D and ∆, we can keep applying it to |ψprod〉 until we

obtain a good approximation to the ground state. If the number of iterations goes to infinity,

then the state will converge to the ground state. But a finite number of iterations provide a

tradeoff between proximity to the ground state and a bound on the entanglement entropy.
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2.3.3 Good AGSP with good product state implies 1D area law

Lemma 2.3.1 (Arad, Landau and Vazirani [6]). Let |Γ〉 be the ground state of H and |φ〉 a

product state such that | 〈φ |Γ〉 | = µ. Then, the existence of a (D,∆)-AGSP K implies that

the entanglement entropy S of |Γ〉 is bounded by

S ≤ O(1) · log µ2

log ∆
logD.

Proof. Let |Γ〉 =
∑

i λi |Li〉 ⊗ |Ri〉 be the Schmidt decomposition of the ground state |Γ〉,
where the Schmidt coefficients λi. Then the entanglement entropy is defined by von Neumann

entropy which is defined in Chapter 1.To bound this quantity, we consider the family of states

K l |φ〉. By Definition 2, it follows that

1. The Schmidt rank of K l |φ〉 is at most Dl.

Argument. By Definition 2, K =
∑

1≤i≤D Li ⊗ Ri and therefore K |φ〉 can be written

as at most D terms. K2 |φ〉 = K(K |φ〉) is at most D terms times D terms, which

gives at most D2 terms. By the same argument, we could say that the Schmidt rank

of K l |φ〉 is at most Dl.

2. The inner product between normalized K l |φ〉 and |Γ〉 is at least µ√
µ2+∆l(1−µ2)

.

Argument. We have conditions | 〈φ |Γ〉 | = µ, and ||K
∣∣Γ⊥〉 ||2 ≤ ∆. We then can write

the product state in the basis of |Γ〉 and
∣∣Γ⊥〉,

|φ〉 = ±µ |Γ〉 ±
√

1− µ2
∣∣Γ⊥〉 .

It follows that

K |φ〉 = ±µK |Γ〉 ±
√

1− µ2K
∣∣Γ⊥〉

= ±µ |Γ〉 ±
√

1− µ2K
∣∣Γ⊥〉 .

Similarly, if we apply K l times, we will get

K l |φ〉 = ±µK l |Γ〉 ±
√

1− µ2K l
∣∣Γ⊥〉

= ±µ |Γ〉 ±
√

1− µ2K l
∣∣Γ⊥〉 .

We now consider the normalization factor of this state. By the shrinking property in

Definition 2, we have ||K l
∣∣Γ⊥〉 ||2 = ||K l−1K

∣∣Γ⊥〉 ||2 ≤ ||K l−1
∣∣Γ⊥〉 ||2∆ ≤ ∆l, which

leads to

||K l |φ〉 ||2 = µ2 + (1− µ)||K l
∣∣Γ⊥〉 ||2

≥ µ2 + ∆l(1− µ2)
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Therefore, we have the inner product between normalized K l |φ〉 and |Γ〉 is∣∣∣∣〈Γ| K l |φ〉
||K l |φ〉 ||

∣∣∣∣ =
| 〈Γ|K l |φ〉 |
||K l |φ〉 ||

=
µ 〈Γ |Γ〉
||K l |φ〉 ||

≥ µ√
µ2 + ∆l(1− µ2)

.

We then use these two properties to bound the entanglement entropy through the following

two steps. The details of these two steps are not shown in [15].

1. −
∑

i≤D4l0 λ
2
i log λ2

i ≤ O(1) · logµ2

log ∆
logD

Argument. By the Eckart-Young theorem [11], which implies that the magnitute of the

inner product between |Γ〉 and any normalizaed state with Schmidt rank r is upper

bounded by the Euclidean norm of the vector of the first r Schmidt coefficients, i.e. by

(
∑r

i=1 λ
2
i ))

1/2. Therefore,

∑
i≤Dl

λ2
i ≥

∣∣∣∣〈Γ| K l |φ〉
||K l |φ〉 ||

∣∣∣∣2
≥ µ2

µ2 + ∆l(1− µ2)

≥ µ2

µ2 + ∆l
,

where the first inequality follows from the Eckart-Young theorem. It follows that

∑
i>Dl

λ2
i ≤ 1− µ2

µ2 + ∆l
=

µ2

µ2 + ∆l
=

∆l

µ2 + ∆l
≤ ∆l

µ2
=: pl.

We now choose l0 = d logµ2

log ∆
e so that pl0 = ∆

d log µ2

log ∆
e

µ2 = ∆dlog∆ µ2e

µ2 ≤ ∆log∆ µ2

µ2 = 1, where the

inequality comes from the fact that ∆ ≤ 1.

Also it is easy to see that
∑

i≤D4l0 λ
2
i ≤ 1 as

∑
i λ

2
i = 1 from Schmidt decomposition.

So by the fact that the entropy of a (sub)normalized d-dimensional vector is at most

log d, we conclude that the contribution from the first D4l0 Schmidt coefficients is at

most

−
∑
i≤D4l0

λ2 log λ2
i ≤ logD4l0 = 4l0 logD = O(1) · log µ2

log ∆
logD.

2. −
∑

i>D4l0 λ
2
i log λ2

i ≤ ∆
(1−∆)2 log D6

∆

Argument. First by previous argument, we have pl0 = ∆l0

µ2 ≤ 1⇒ ∆l0 ≤ µ2. It follows
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that pl = ∆l

µ2 ≤ ∆l−l0 . Then we also have

D2(l+1)∑
i=D2l+1

λ2
i ≤

∑
i>D2l

λ2
i ≤ p2l ≤ pl ≤ ∆l−l0 .

It follows that
∑D2(l+1)

i=D2l+1

(
λi√

∆l−l0

)2

≤ 1, which implies

−
D2(l+1)∑
i=D2l+1

λ2
i

∆l−l0
log

λ2
i

∆l−l0
≤ logD2(l+1)

1

∆l−l0

− D2(l+1)∑
i=D2l+1

λ2
i log λ2

i +
D2(l+1)∑
i=D2l+1

λ2
i log ∆l−l0

 ≤ logD2(l+1)

−
D2(l+1)∑
i=D2l+1

λ2
i log λ2

i + log ∆l−l0
D2(l+1)∑
i=D2l+1

λ2
i ≤ ∆l−l0 logD2(l+1)

−
D2(l+1)∑
i=D2l+1

λ2
i log λ2

i −
∣∣log ∆l−l0

∣∣ D2(l+1)∑
i=D2l+1

λ2
i ≤ ∆l−l0 logD2(l+1)

−
D2(l+1)∑
i=D2l+1

λ2
i log λ2

i ≤ ∆l−l0 logD2(l+1) +
∣∣log ∆l−l0

∣∣ D2(l+1)∑
i=D2l+1

λ2
i

−
D2(l+1)∑
i=D2l+1

λ2
i log λ2

i ≤ ∆l−l0 logD2(l+1) +
∣∣log ∆l−l0

∣∣∆l−l0

−
D2(l+1)∑
i=D2l+1

λ2
i log λ2

i ≤ ∆l−l0 logD2(l+1) − log ∆l−l0∆l−l0

−
D2(l+1)∑
i=D2l+1

λ2
i log λ2

i ≤ ∆l−l0(l − l0) log
D2(l+1)/(l−l0)

∆
,

where the 4th inequality comes from the fact that log ∆l−l0 ≤ 0.
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We now consider the contribution from Schmidt coefficients other than the first D4l0 .

−
∑
i>D4l0

λ2 log λ2
i = −

∑
j≥2l0

 D2(j+1)∑
i=D2j+1

λ2
i log λ2

i


≤
∑
j≥2l0

∆j−l0(j − l0) log
D2(j+1)/(j−l0)

∆

=
∑
j≥l0

∆jj log
D2(j+l0+1)/j

∆

≤
∑
j≥l0

∆jj log
D6

∆

≤

(∑
j≥1

∆jj

)
log

D6

∆

=
∆

(1−∆)2
log

D6

∆
.

where the fourth line comes from the fact that j+l0+1
j

= 1 + l0+1
j
≤ 1 + l0+1

l0
= 2 1

l0
≤ 3,

and the last line comes from the series equality
∑

j≥1 jr
j = r

(1−r)2 .

Combining the two bounds we have derived above, it follows that the entanglement entropy

of the ground state satisfies

S = −
∑
i

λ2 log λ2
i ≤ O(1) · log µ2

log ∆
logD +

∆

(1−∆)2
log

D6

∆
.

Finally, note that for any k > 1, it is easy to see that Kk is a (Dk,∆k)−AGSP . Moreover,

if we choose k = d− 1
log ∆
e, then we have

log ∆k = log ∆d−
1

log ∆
e = d− 1

log ∆
e log ∆ ≥ −1.

Therefore we can ensure that 1
4
≤ ∆k ≤ 1

2
. Substituting Dk for D and ∆k for ∆, we will

obtain

O(1) · log µ2

log ∆k
logDk = O(1) · k · log µ2 1

log ∆k
logD

≤ −O(1) · k · log µ2 logD,
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and will also obtain

∆k

(1−∆k)2
log

D6k

∆k
≤ 1/2

(1− 1/2)2
k log

D6

∆

= 2k · (6 logD − log ∆)

= 12k · logD − 2k log ∆

= O(1) · k · logD −O(1) · k · log ∆

≤ O(1) · k · (logD − 1).

Hence, we have

S ≤ O(1) · k ·
(
− log µ2 logD + logD − 1

)
= O(1) ·

⌈
− 1

log ∆

⌉
·
(
− log µ2 logD + logD − 1

)
≤ O(1) · log µ2

log ∆
logD.

End of proof.

2.3.4 Good AGSP implies a good product state

From Section 2.3.3, we know that to prove 1D area law, it suffices to have a good AGSP

along with a product state with constant overlap with the ground state. In this section, we

will show that actually a good AGSP will imply a good product state.

Lemma 2.3.2 (Arad, Landau and Vazirani [6]). If there exists a (D,∆) − AGSP K such

that D · ∆ ≤ 1
2
, then there exists a product state |φ〉 = |L〉 ⊗ |R〉 whose overlap with the

ground state |Γ〉 is µ = | 〈Γ |φ〉 | > 1√
2D
.

Proof. We prove the lemma by contradiction. Let |φ′〉 be a product state such that 〈Γ |φ′〉 ≤
µ, and assume for sake of contradiction that µ < 1√

2D
. Then, consider the state |φ〉 := K|φ′〉

||K|φ′〉|| .

By definition of an AGSP, the Schmidt rank of |φ〉 is at most D, and therefore it can be

written as |φ〉 =
∑D

i=1 λi |Li〉 ⊗ |Ri〉. It follows that

µ2

||K |φ′〉 ||2
=
| 〈Γ|K |φ′〉 |2

||K |φ′〉 ||2

= | 〈Γ |φ〉 |2

≤

(
D∑
i=1

λi| 〈Γ | (|Li〉 ⊗ |Ri〉)〉 |

)2

≤
D∑
i=1

| 〈Γ | (|Li〉 ⊗ |Ri〉)〉 |2,



2.3. Proof of 1D Area Law 15

where the first equality comes from Definition 2 and the last inequality comes from Cauchy-

Schwarz inequality, and
∑

i λ
2
i = 1. Therefore there exists some i such that

| 〈Γ | (|Li〉 ⊗ |Ri〉)〉 |2 ≥
µ2

||K |φ′〉 ||2
≥ µ2

D(µ2 + ∆)
,

where the last inequality follows from the fact that K is a (D,∆)-AGSP and Definition 2.

However by the assumption that D ·∆ ≤ 1
2

and µ < 1√
2D

, we know D(µ2 +∆) = Dµ2 +D∆ <
1
2

+ 1
2

= 1, which gives

| 〈Γ | (|Li〉 ⊗ |Ri〉)〉 | > µ,

implying that 〈Γ | (|Li〉 ⊗ |Ri〉)〉 has a larger overlap with |Γ〉 than |φ′〉 does, and this raises

a contraction. Therefore we should have µ > 1√
2D
.

End of proof.

By combining Lemma 2.3.1 and 2.3.2, we obtain the following theorem.
Theorem 2.3.3 (1D Area Law). If there exists a (D,∆)-AGSP such that D · ∆ ≤ 1

2
, the

ground state entanglement entropy is bounded by O(1) · logD.

2.3.5 Construction of AGSP

As Hamiltonian H is an operator which classifies a quantum system, we build a AGSP from

H. For the quantum n-particle system under investigation, we consider a Hamiltonian H

with the following structure: HL acts on particle 1, . . . ,m, H = HL+H1+H2+. . .+Hs+HR,

where Hi acts locally on particle m+ i and m+ i+ 1, HR acts on particle m+ s+ 1, . . . , n.

Assume that H has a unique ground state |Γ〉 with energy ε0 (ε0 = 0 for frustration-free

system) and that the other eigenvalues belong to the interval [ε1, ‖H‖]. The spectral gap is

ε = ε1 − ε0, and we call a Hamiltonian gapped Hamiltonian if for an infinitely large many-

body system, ε > 0.

First Attempt: K = I − H
||H||

We need to construct an AGSP in this section, i.e. an operator that leaves the ground state

invariant and shrinks every vector that is orthogonal to the ground state. As the only in-

formation regarding the ground state in our possession is the Hamiltonian H itself, we use

H as our starting point. Consider the first attempt of operator of interest being K = I− H
||H|| .

Note that H is a frustration-free Hamiltonian, which means that the ground state energy

is zero. It also follows that the first excited state energy is ε, the spectral gap of the given

Hamiltonian. Then it is easy to see that K |Γ〉 = |Γ〉 − H|Γ〉
||H|| = |Γ〉, leaving the ground state

invariant. As for the shrinking property, since
H|Γ⊥〉
||H|| ≥

ε
||H||

∣∣Γ⊥〉, K cuts the norm of any
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orthogonal state to at most

∣∣K ∣∣Γ⊥〉∣∣ =

∣∣∣∣∣∣∣Γ⊥〉− H
∣∣Γ⊥〉
||H||

∣∣∣∣∣ ≤
∣∣∣∣∣∣∣Γ⊥〉− λ

∣∣Γ⊥〉
||H||

∣∣∣∣∣ ≤ 1− ε

||H||
,

where λ is some energy level. Thus, Kk for large values of k yields an AGSP with a good

value of ∆. Unfortunately, however, in general with this construction, since we raise K to

the power of k and then its Schmidt rank will increase correspondingly, D will also grow

exponentially in k. Thus, this candidate AGSP does not satisfy our required condition that

D ·∆ ≤ 1
2
.

Second and Successful Attempt: K = C`(H)

However, this first attempt leads us to consider manipulating the spectrum of H via matrix

polynomials. We choose a polynomial f(x) that maps 0 to 1 and [ε, ‖H‖] to [0,∆], and then

as λi ∈ [ε, ‖H‖], it follows that f(λi) ∈ [0,∆]. We then write an arbitrary vector v ∈ Γ⊥ in

terms of eigenvectors that are orthogonal to the ground state, v = c1v1 + . . ., which will give

Hv = λ1c1v1 + . . .. Therefore by applying f , we will have

|f(H)v| = |f(λ1)c1v1 + . . . | ≤ |c0v0 + ∆(c1v1 + . . .)| = ∆|v|,

which implies that f(H) will have the shrinking factor ∆. Then the remaining task then is

to show that f(H) has a small Schmidt rank. Naturally one would expect that f must have

a small degree, because the naive bound on the Schmidt rank grows at least exponentially

in the degree of the polynomial.

Now it is the time to choose f . We consider the well-known family of polynomials T` called

the Chebyshev polynomial of the first kind in approximation theory, which is defined

by the recurrence relation:

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x)

It follows that it has the following properties [1]:

1. The degree of T`(x) is `.

2. For x ∈ [−1, 1], |T`(x)| ≤ 1.

3. For x > 1, T`(x) ≥ 1
2
e2`
√

(x−1)/(x+1).

The main point is that once x passes the value 1, the polynomial begins to increase very

rapidly, giving rise to a threshold-like behavior. We will use this behavior to address the

challenge that the operator f(H) should have an eigenvalue of 1 (as f maps 0 to 1) for the
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ground state while it should have a very small eigenvalue for the first excited state which is

only ε away from the ground state in the energy spectrum.

The strategy is to make the first excited state correspond to T`(1) and the largest eigenvector

to T`(−1) so that all excited states have eigenvalues at most 1, (by property 2) while the

ground state, which will then correspond to T`(1 + y) for some small y has a much greater

eigenvalue. Then we can renormalize the operator so that the eigenvalue of the ground state

becomes 1, as required by the definition of an AGSP.

In other words, we construct a family of polynomials C` by scaling and translating T` as

follows:

C`(x) = T`

(
‖H‖+ ε− 2x

‖H‖ − ε

)
/T`

(
‖H‖+ ε

‖H‖ − ε

)
.

It is easy to see that the numerator of C`(x) maps 0 to 1, ε to 0 and ‖H‖ to −1. Then

we can prove that C`(H) is an AGSP with ∆ =4e−4`
√
ε/‖H‖. (We will use the fact that

P (α + βH)v = P (α + βλ)v where Hv = λv.)

1. Ground space invariance:

C`(H) |Γ〉 = T`

(
‖H‖+ε−2H
‖H‖−ε

)
/T`

(
‖H‖+ε
‖H‖−ε

)
|Γ〉 = T`

(
‖H‖+ε
‖H‖−ε

)
/T`

(
‖H‖+ε
‖H‖−ε

)
|Γ〉 = |Γ〉

2. Shrinking:

We know that
∣∣∣T` (‖H‖+ε−2x

‖H‖−ε

)∣∣∣ ≤ 1 for x ∈ [ε, ‖H‖] as it maps [ε, ‖H‖] to [T`(−1), T`(1)].

Therefore

|C`(x)| =

∣∣∣T` (‖H‖+ε−2H
‖H‖−ε

)∣∣∣∣∣∣T` (‖H‖+ε‖H‖−ε

)∣∣∣ ≤ 1∣∣∣T` (‖H‖+ε‖H‖−ε

)∣∣∣ ≤ 1
1
2
e2`
√
ε/‖H‖

= 2e−2`
√
ε/‖H‖,

where the third inequality comes from that
‖H‖+ε
‖H‖−ε−1

‖H‖+ε
‖H‖−ε+1

= ε
‖H‖ , and then together with

property 3 of T` that T`

(
‖H‖+ε
‖H‖−ε

)
≥ 1

2
e2`
√
ε/‖H‖.

Therefore we have, for x ∈ [ε, ‖H‖],∥∥C`(H)
∣∣Γ⊥〉∥∥2

=
∥∥C`(x)

∣∣Γ⊥〉∥∥2

≤
(

2e−2`
√
ε/‖H‖

)2

= 4e−4`
√
ε/‖H‖

3. Entanglement: Proved by Lemma 2.3.4 using H ′ which is explained below.

However, as ‖H‖ can be very large, the above bound on ∆ will decay not as fast as expected.

This issue can be addressed by a technique called Hamiltonian truncation. The technique
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consists in picking out s particles around the cut and truncating the upper spectrum of

the other ‘less important’ particles. As stated in the beginning of the section, we represent

the Hamiltonian as H = HL + H1 + . . . + Hs + HR, where ‖H1 + . . . + Hs‖ ≤ s, and HL

and HR represents summation of Hamiltonian for particles not included in the s particles.

The method used here is that we replace HL and HR by their respective truncated versions

H≤tL and H≤tR , where A≤t denotes the matrix obtained from A by replacing all eigenvalues

greater than t with t and leaving the other eigenvalues unchanged. Therefore considering

the resulting truncated Hamiltonian H ′, we will see

‖H ′‖ = sup |λHL ≤ t|+ ‖H1 + . . .+Hs‖+ sup |λHR ≤ t| ≤ s+ 2t.

It can also be shown that the spectral gap of H ′ remains to be Ω(1) · ε for t = O
(

1
ε

)
(See [6]

Lemma 6.1 for an explanation).

Moreover, since the Hamiltonian is frustration-free and gapped, H and H ′ have the same

(unique by assumption) ground state. (This is the only time we use the constraint of

frustration-free hypothesis in the whole proof.) This means that we can use H ′ in place

of H in our construction of the AGSP because we only consider the ground state of the

Hamiltonian here and then for f(H ′), ground space invariance property follows directly. As

the norm of H ′ is bounded up to our choice of s and t, we will have small enough ∆k with

not so large k, which will make the shrinking property of C`(H
′) and then C`(H).

We now need to prove that C`(H
′) has a small Schmidt rank across the given cut to make

it an acceptable AGSP.

Lemma 2.3.4. The Schmidt rank of K = C`(H
′) across the middle cut is bounded by

D = (d`)O(`/s). [6]

Proof. W.l.o.g we may assume that s ≤
√
l. If this is not the case, we can reduce s to√

` by joining some of the Hj’s with either HL or HR. This does not change the actual

entanglement rank or the required bound. After this reduction, s ≤
√
l.

By the property of T`, and then C`, each term in the expansion of C`(H
′) is a product of at

most ` terms of H ′. We will bound the Schmidt rank added by each term, and so it suffices

to analyze the Schmidt rank of the worst case (H ′)`. We first consider the expansion

(H ′)` =
(
H≤tL +H1 + . . . Hs +H≤tR

)`
=
∑
j1,...,j`

Hj1 . . . Hj` ,

where as explained before, Hi acts locally on particle m+ i and m+ i+1, HL acts on particle

1, . . . ,m, HR acts on particle m + s + 1, . . . , n and the summation is over all products of

` Hamiltonians from the set
{
H≤tL , H1, . . . Hs, H

≤t
R

}
. However it has exponentially many

terms in the expansion and thus we cannot simply evaluate each term and sum these up.

So we circumvent this problem by cleverly grouping the exponential number of terms by the
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number of occurrences of each Hj. To this end, we introduce a generating function, which

is a polynomial in a formal commuting variables Z0, . . . Zs+1:

P`(Z) = (HLZ0 +H1Z1 + · · ·+HRZs+1)` =
∑

a0+···+as+1=`

fa0,...,as+1Z
a0
0 Z

a1
1 . . . Z

as+1

s+1 ,

where fa0,...,as+1 is the sum of products Hj1 . . . Hj` , where each Hj occurs exactly aj times.

Note that we are interested in estimating the Schmidt Rank of (H ′)` =
∑

j1,...,j`
Hj1 . . . Hj` =∑

a0+···+as+1=` fa0,...,as+1 .

We start by noticing that for each multi-index (a0, . . . , as+1), there is some i ∈ {1, . . . , s}
such that ai ≤ `/s by pigeonhole principle. Thus,

(H ′)` =

`/s∑
k=0

Q1,`k + . . .+

`/s∑
k=0

Qs,`k =
s∑
i=1

`/s∑
k=0

Qi,`k,

where Qi,`k is the sum of operators such that ai = k and
∑

j 6=i aj = ` − k. (This decompo-

sition of (H ′)` is not unique, and by the assumption that s ≤
√
`, the double summation

makes sense.) We will, eventually, bound the Schmidt rank of each Qi,`k.

To do that, we define a generating function that includes all the matching fa0,...,as+1 ’s:

Pi,`k(Z) =
∑
ai=k∑

j 6=i aj=`−k

fa0,...,as+1

∏
j 6=i

Z
aj
j .

This sum has t =
(
l−k+s
s

)
terms as it is the same as the number of different sequences

(a1, . . . as+1) (w.l.o.g assume i = 0), with a1 + . . .+ as = `− k. In this function, the variable

Zi is excluded, or we may consider it to be equal to 1. When the remaining variables are

assigned definite values, Z ∈ Cs+1, we obtain a linear combination of the operators fa0,...,as+1 .

(with each constant equals to
∏

j 6=i Z
aj
j .)

The key observation is that such linear combinations have full rank because there cannot be

more than t numbers of distinct fa0,...,as+1 ’s. Then in other words, there are t distinct values

of Z ∈ Cs+1 such that the corresponding {Pi,`k(Z)} form a basis in the space of operators

of the form
∑
ca0,...,as+1fa0,...,as+1 , where ca0,...,as+1 ∈ C and the sum runs over the support of

Pi,`k. In particular, Qi,`k is a linear combination of t operators of the form Pi,`k(Z) with some

definite Z’s.

For a fixed Z, the operator Pi,`k(Z) can be obtained as follows. We write P`(Z) = (A+Hi +B)`

where A =
∑

j<iHjZj and B =
∑

j>iHjZj, and then collect the terms with Hi appearing

exactly k times. since A and B commute, such terms have the form Aa0Bb0Hi · · ·HiA
akBbk .

The number of distinct terms like this is the same as the number of different sequences

(a0, b0, . . . , ak, bk), with a0 + b0 + . . .+ ak + bk = `− k. So there are
(
`−k+2(k+1)−1

2(k+1)−1

)
=
(
`+k+1
2k+1

)
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distinct terms like that.

The Schmidt rank of each term across cut i is at most d2k, where d is the local dimension

of particles. (Hi has Schmidt rank at most d2 as with dimension d, there are d2 possibilities

of Li ⊗ Ri, and then k numbers of Hi will lead to Schmidt rank at most d2k.) We can

then write the Schmidt decomposition of the term as
∑d2k

j=1 C
I
j ⊗DII & III

j , where I, II and III

describes regions shown in Figure 2.3. Now we consider the middle cut. In this regards, we

need to further Schmidt decompose DII & III
j as Dj acts on both region II and III. There are

|i − s/2| qubits in region II and s/2 qubits in region III, so the Schmidt rank of DII & III
j is

at most
(
dmin{|i−s/2|,s/2})2

= d2|i−s/2|, where the first expression comes from Theorem 1.3 in

[21]. Therefore the Schmidt rank across the middle cut is bounded by d2k · (d2)
|i−s/2| ≤ ds.

Figure 2.3: The Schmidt Rank of Each Term across the Middle Cut.

Also here, if we consider the Schmidt rank across an arbitrary cut, we just need to recon-

sider the number of qubits between cut i and the middle cut, but it will not have any impact

asymptotically.

For each factor, given k ≤ `/s and s ≤
√
`, we calculate the asymptotic bound,(

`− k + s

s

)
= the number of different sequences (a1, . . . as+1) with a1 + . . .+ as = `− k

≤ the number of sequences (a1, . . . as+1) with each aj ≤ l

≤ `s+1

≤ `O(s),

and then (
`+ k + 1

2k + 1

)
=

(
`− k + (2k + 1)

2k + 1

)
≤ `O(2k+1)

= `O(k)

≤ `O(`/s).
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Combining all factors, we find that

Schmidt rank (Qi,`k) ≤
(
`− k + s

s

)(
`+ k

2k + 1

)
d2k+s ≤ `O(s)`O(`/s)d2`/s+s ≤ (d`)O(`/s).

Then (H ′)` =
∑s

i=1

∑`/s
k=0 Qi,`k ≤ (d`)O(`/s) as the summation over i and k will not influ-

ence the bound in this asymptotic form. It follows that the Schmidt rank of K = C`(H
′),

D ≤ (d`)O(`/s) as (H ′)` is the term with highest powers and then the remaining terms will

not increase the bound in the asymptotic form.

End of proof.

Then together this bound with our previously obtained expression ∆ = 4e−4`
√
ε/‖H′‖ (recall

that for truncated Hamiltonian H ′, we have ‖H ′‖ ≤ s + 2t), we decide to choose ` = O(s2)

and s = O((log2 d)/ε), so that with large enough constants, we can force

D ·∆ = (d`)O(`/s) · 4e−4`
√
ε/‖H′‖ ≤ 1

2
.

(See [6] Theorem 4.3 for detailed discussions about the choice of parameters.)

Therefore, by Theorem 2.3.3, we can conclude that there exists an area law for 1D gapped

(frustration-free) systems.

2.4 Discussion of Frustrated Hamiltonian

The difference in the frustrated case is that when we consider the truncated Hamiltonian

H ′(t) = H≤tL +H1 + . . .+Hs +H≤tR (defined in subsection 2.3.5), it no longer has the same

ground state |Γ〉. But the structure of the samll eigenvectors and eigenvalues of H ′(t) should

approach those of H as t grows.

The main idea for frustrated case is to use a well chosen sequence t0, t1, . . . to guide the

movement towards the ground state i.e. to use a sequence of states |ψ0〉 , |ψ1〉 , . . . that con-

verge to |Γ〉, while carefully controlling the tradeoff between increase in entanglement rank

(D) and increase in overlap (∆) with |Γ〉. Unlike directly applying Lemma 2.3.4 to H ′ which

may lead to D becoming a large function of t, we use the AGSP K = C`(H
′(ti)) from Lemma

2.3.4 to move from state ψi−1 to ψi, where ψi has overlap at least 1−µi with |φti〉, the ground

state of H ′(ti).

A detailed explanation and arguments are in Section 6 of [6].
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2.5 Discussion of Degenerate Ground States

In the above proof, we assume a 1D ground space of the quantum system which means H has

a unique ground state. In [18], an area law is proved for the Renyi entanglement entropy of

degenerate ground states in 1D gapped system, and an area law for the Renyi entanglement

entropy implies that for von Neumann entropy.

Steps of the proof are similar to the method presented above by using AGSP to bound the

increase of Schmidt ranks and then proving an efficient construction of AGSP will imply an

area law. [18] first constructs a family of AGSP with nearly degenerate ground states with

some perturbation theory involved also using Chebyshev polynomial. Then it constructs a

sequence of approximations to basis vectors of the ground state space (here it requires new

ideas to keep track of such a set of basis vectors) to prove the area law. The construction

presented here is claimed to be more efficient than the approach (Corollary 2.4 and Section

6.2) in [6], resulting in an area law for the Renyi entanglement entropy and then it follows

for von Neumann entropy.

Detailed proofs and explanation are in [18]. Note that the degeneracy we discuss here is

constant-fold degeneracy, i.e. ground space should be of constant dimension even if not 1D.

It is still unknown whether area laws hold when the ground space is of dimension polynomial

in n [18].



Chapter 3

Introduction to Quantum Models

3.1 XXZ Model

The Heisenberg Model is a statistical mechanical model used in the study of critical points

and phase transitions of magnetic systems, in which the spins of the magnetic systems are

treated quantum mechanically. In a quantum system, we usually classify a certain model by

a Hamiltonian, which is the sum of kinetic energies of all particles (qubits), plus the potential

energy of the particles associated with the system.

Quantum mechanically, nearest-neighbors will have the lowest energy when they are aligned

because of the dominant coupling between two dipoles. So we assume magnetic interactions

only happen between neighbouring dipoles. Under this assumption, we have the Hamiltonian

for a 1D non periodic lattice (chain) with n qubits:

Ĥ = −1

2

n−1∑
i=1

(JxXiXi+1 + JyYiYi+1 + JzZiZi+1 + hZi) ,

where Z =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
, Xi = I⊗i−1 ⊗ X ⊗ I⊗n−i and

similar for Yi and Zi (I is the 2× 2 identity matrix). X, Y and Z are Pauli spin-1
2

matrices,

which are quantum operators acting on the tensor product (C2)⊗n. Jx, Jy and Jz are three

coupling constants, and h represents the external magnetic field, with non periodic boundary

conditions here.

In the case that Jx = Jy 6= Jz, the model is called the Heisenberg XXZ model. We rewrite

the Hamiltonian construction:

H = J
∑
i

XiXi+1 + YiYi+1 + ∆ZiZi+1 + hZi,

where J is the coupling constant for 1D model consisting of n qubit, ∆ is a parameter that
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controls the anisotropy in the z direction. Note that if ∆ = 0, it recovers XX model and if

∆ = 1, it recovers XXX model.

For our interest, we set h = 0 so that there are no external magnetic fields, and the exact

solution is given by the Bethe Ansatz technique [7]. We can choose J arbitrarily since we

only focus on normalized states and J will have no influence. Only XXZ model with |∆| > 1

is gapped, i.e. there is a gap between the ground state and the first excited state. We discuss

|∆| ≤ 1 in the next paragraph, and for ∆ −→ ±∞, we will recover classical Ising model,

which is also not gapped. There is no specific argument about at which ∆ the system is no

longer gapped. We choose to focus on 1 < ∆ < 99 in this paper, which should satisfy an

area law. We investigate this property in Section 5.1

Also note that different ∆s give different ground state structures. For ∆ < −1 the system

is ferromagnetic and the exact ground state has all atoms aligned in the z-direction, i.e.

|Γ〉 = |0 . . . 0〉 or |Γ〉 = |1 . . . 1〉. For −1 < ∆ < 1 the ground state is co-planar, with zero

expectation value for 〈Sz〉, i.e. the ground state has almost equal number of |0〉s and |1〉s.
In the Ising limit ∆ −→ ∞, the ground state would be the Néel state, with alternate |0〉s
and |1〉s [23].

In the thesis, I mainly investigate on ∆ ≥ 0, especially 1 < ∆ < 99. So I choose to assume

that the ground state would be in the form of almost equal number of |0〉s and |1〉s, i.e.

the total spin is minimized. This is because for the range of ∆s I pick, they are closer to 1

compared to∞. Also, even if these ground state structures gradually approach ground state

structures in the Ising limit, it does not make much effect because later cases are included in

the previous cases. For example, for 4 qubits with −1 < ∆ < 1, a ground state can be writ-

ten only with {|0011〉 , |0101〉 , |0110〉 , |1001〉 , |1010〉 , |1100〉}. But with ∆ −→∞, a ground

state can be written only with {|0101〉 , |1010〉}. In this way, if we choose the previous basis,

ground states lying into the later case can also be represented with coefficients 0 for useless

vectors in the basis.

We also make a few remarks about the entanglement entropy of the ground state of XXZ

model with −1 < ∆ ≤ 1, where the system is in the gapless critical XY phase. The scaling

law of entanglement entropy for finite sizes is

SA(l, L) =
c+ c̄

6
log

[
L

π
sin

(
πl

L

)]
+ k,

for a subsystem of size l and total size L. c and c in the equation are parameters related

to conformal field theory [9]. ∆ = −1 is proved to cause a singularity in the entanglement

entropy [12] [13]. As for ∆ −→ −1+, it is proved that the entanglement entropy scales

logarithmically with L, the number of qubits [24] [10].
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3.2 XXZ-Variant Model

As the Hamiltonian for normal XXZ model is not frustration free and possible AGSP in the

form of I − H
‖H‖ is proposed in [15], we would like to see how frustration free Hamiltonian

acts under such possible AGSP. [8] discusses the construction of a frustration free gapped

Hamiltonian: Consider a chain of n qubits with open boundary conditions and define a

Hamiltonian

Hn(ψ) =
n−1∑
i=1

|ψ〉 〈ψ|i,i+1 .

Here each term is a rank-1 projector onto ψ applied to a consecutive pair of qubits.

For a special kind of XXZ model - the ferromagnetic XXZ chain with kink boundary condi-

tions, which we call it XXZ-Variant Model here, we have

|ψ〉 =
1√

1 + q2
|01〉 − q |10〉 ,

and when q 6= 1, the corresponding system is gapped which is proved in [15].

However, the ground-state space of the Hamiltonian is not of constant dimension. Instead,

it has ground state degeneracy n+ 1 which is a polynomial in n. As we discussed in Section

2.5, an area law is not yet proven to exist under this case and so we do not know how its

entanglement entropy grows with increasing number of qubits theoretically. We will still

investigate this relationship experimentally in Section 5.2, but we will stop there instead of

continuing to investigate its corresponding AGSP.

3.3 AKLT Model

Unlike the XXZ model describing a chain of qubits (spin-1/2 particles), the AKLT model

focuses more on a spin-1 system. In particular, this model is interested in constructing a

one-dimensional state with a valence bond between every pair of sites. This leads to two

spin-1/2 particles for every site, and the result will be a spin-1 chain.

As described in [2], to find a Hamiltonian for which the chain described above is the ground

state, we choose the Hamiltonian to be a sum of projection operators onto spin 2 for each

neighboring pair (denoted as P S=2
i,i+1). This is because the a valence bond between adjacent

spin-1/2 particles implies that the total spin of each pair site cannot be 2. (Two of the spin-

1/2 particles will form a singlet. For short chains, the edge states mix into either a singlet

or a triplet giving either a unique ground state (closed chain) or a three-fold multiplet of
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ground states.) Here is the Hamiltonian:

H =
∑
i

P S=2
i,i+1

=
∑
i

[
1

2
Si · Si+1 +

1

6
(Si · Si+1)2 +

1

3

]
,

where S = (S1, S2, S3) is the vector of standard spin-1 matrices.

It is also claimed in [2] that

1. The ground-state energy of this Hamiltonian is zero.

2. In the infinite-volume limit (n goes to infinity) there is always a unique ground state.

3. There is a non-vanishing gap in the spectrum above the ground state. (This is also

discussed and investigated rigrously in [14] which is to investigation on the spectral

gap using Tensor Network.)

Since the ground state will vanish with n goes to infinity, we can conclude that the ground-

state degeneracy will not be of polynomials of n and so there exists an area law for AKLT

model. But since the Hilbert space grows with 3n, where n is the number of qubits, by the

limitation of computation power and understanding of spin-1 model, we will just investigate

its entropy entanglement growth.



Chapter 4

Numerical Techniques to Study

Physical Models

4.1 Standard Construction

To study the low-energy physics of a certain model, it is common to start from its Hamilto-

nian which describes and classifies a certain system. Then from this Hamiltonian, we can get

information from its eigensystem, which is always the focus of interest as it is frame invariant.

To study the area law on certain model, we focus on the ground state. Then through Schmidt

decompostion, we find ground state’s Schmidt coefficients and entanglement entropy, as de-

fined in Chapter 1. The formal steps are defined below:

Input : Parameters needed to construct the Hamiltonian.

1. Compute Hamiltonian matrix H of a certain model based on its definition.

2. Find the ground state v of the Hamiltonian H.

3. Find the Schmidt decomposition v and record its Schmidt coefficients {λi}.

4. Calculate the entanglement entropy of the model across certain cut, according to

{λi}.

Output : Schmidt Coefficients / Entanglement Entropy

Algorithm 1: Standard Algorithm for Model Construction

Take the XXZ Model as an example, in step 1, we compute its Hamiltonian by

H = J
∑
i

XiXi+1 + YiYi+1 + ∆ZiZi+1,

where J is the coupling constant for 1D model consisting of n qubit, ∆ is a parameter that
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controls the anisotropy in the z direction, and X, Y , Z are Pauli matrices defined before.

4.2 Quicker Construction based on Hamming Weights

When the number of qubits n grows, the dimension 2n × 2n of H grows very fast, which

makes matrix multiplication and Schmidt decomposition very slow. But by the intuition

that relatively equal number of ups and downs balance each other, giving the lowest energy,

we know that the ground state is only associated with states of almost the same number of

0s and 1s. Therefore, we design an algorithm to construct the Hamiltonian only associated

with these states. Formal steps are presented below:

Input : Parameters needed to construct the Hamiltonian.

1. Compute the Hamiltonian matrix H̃ of a certain model based on its definition, but

with basis b̃ consisting of almost equal numbers of 0s and 1s

2. Find the ground state ṽ of the Hamiltonian H̃.

3. Refill the ground state ṽ with 0 under original basis b (dimension = 2n), call the new

one v. (Detailed explanations are given below by an example.)

4. Find the Schmidt coefficients {λi} of v.

5. Calculate the entanglement entropy of XXZ model across certain cut, according to

{λi}.

Output : Schmidt Coefficients, Entanglement Entropy

Algorithm 2: Quicker Algorithm for Model Construction

Note that H̃ = PHP T , where P is a change of basis matrix, such that

Pij =
〈
b̃i

∣∣∣ bj〉 =
(
b̃i

)T
· bj.

Also, the size of H̃ is either
(
n
n/2

)
×
(
n
n/2

)
(even n) or 2

(
n
n/2

)
× 2
(
n
n/2

)
(odd n). Schmidt

coefficients generated by Algorithm 2 gives exact Schmidt coefficients by the validity of the

algorithm which we will argue later.

We mainly implement this algorithm for XXZ model and we show how to generate the ground

state Hamiltonian H̃ for XXZ model through the following procedure:
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Input : n,J and ∆.

1. For any basis element p ∈ b̃, we write it in bra-ket notation |p〉 = |p1p2 . . . pn〉.

2. Then we count the number of pairs 00 and 11 in s and call it d, i.e. the number of i’s

such that pi = pi+1. It automatically follows that the number of pairs 01 and 10 is

n− 1− d.

3. For every pair 01 or 10, we switch its position which leads to a new state qi. In other

words, for every pj 6= pj+1, we generate |qj〉 = |p1 . . . pj+1pj . . . pn〉. (Note that we

have n− 1− d |qj〉’s.)

4. We then compute |p′〉 = ∆(d− (n− d− 1)) |p〉+ 2
∑

j |qj〉 for all p ∈ b̃. We relabel |p〉
as
∣∣∣b̃i〉 and calculate

∣∣∣b̃′i〉 = |p′〉 for all b̃i using the formula.

5. Then we come up with H̃ij =
〈
b̃i

∣∣∣ b̃′j〉 .
Output : Schmidt Coefficients / Entanglement Entropy

Algorithm 3: Quicker Algorithm for XXZ Model Construction

As for the second refill step in algorithm 3, we do it by expanding ṽ =
∑

i c̃ib̃i to v =
∑

i cibi,

in the way that if bi = b̃i in the bra-ket notation, we let ci = c̃i and otherwise we let ci = 0.

Still taking XXZ Model as an example, we choose the number of qubits n = 3. Basis states

with almost equal numbers of 0s and 1s in string forms are |001〉 , |010〉 , |011〉 , |100〉 , |101〉 , |110〉
and they form a basis b̃. We then construct the Hamiltonian with basis b̃, following above

algorithm.

state p or b̃i d n− 1− d {qj} b̃′i
|001〉 1 1 |010〉 2 |010〉+ 0 |001〉
|010〉 0 2 |100〉, |001〉 2 |100〉+2|001〉+ 2∆ |010〉
|011〉 1 1 |101〉 2 |101〉+ 0 |011〉
|100〉 1 1 |010〉 2 |010〉+ 0 |100〉
|101〉 0 2 |011〉, |110〉 2 |011〉+2|110〉+ 2∆ |101〉
|110〉 1 1 |101〉 2 |101〉+ 0 |110〉

Table 4.1: Parameters for Implementation of Algorithm 3
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It follows that

H̃ =



〈
b̃1

∣∣∣ b̃′1〉 〈
b̃1

∣∣∣ b̃′2〉 〈
b̃1

∣∣∣ b̃′3〉 〈
b̃1

∣∣∣ b̃′4〉 〈
b̃1

∣∣∣ b̃′5〉 〈
b̃1

∣∣∣ b̃′6〉〈
b̃2

∣∣∣ b̃′1〉 〈
b̃2

∣∣∣ b̃′2〉 〈
b̃2

∣∣∣ b̃′3〉 〈
b̃2

∣∣∣ b̃′4〉 〈
b̃2

∣∣∣ b̃′5〉 〈
b̃2

∣∣∣ b̃′6〉〈
b̃3

∣∣∣ b̃′1〉 〈
b̃3

∣∣∣ b̃′2〉 〈
b̃3

∣∣∣ b̃′3〉 〈
b̃3

∣∣∣ b̃′4〉 〈
b̃3

∣∣∣ b̃′5〉 〈
b̃3

∣∣∣ b̃′6〉〈
b̃4

∣∣∣ b̃′1〉 〈
b̃4

∣∣∣ b̃′2〉 〈
b̃4

∣∣∣ b̃′3〉 〈
b̃4

∣∣∣ b̃′4〉 〈
b̃4

∣∣∣ b̃′5〉 〈
b̃4

∣∣∣ b̃′6〉〈
b̃5

∣∣∣ b̃′1〉 〈
b̃5

∣∣∣ b̃′2〉 〈
b̃5

∣∣∣ b̃′3〉 〈
b̃5

∣∣∣ b̃′4〉 〈
b̃5

∣∣∣ b̃′5〉 〈
b̃5

∣∣∣ b̃′6〉〈
b̃6

∣∣∣ b̃′1〉 〈
b̃6

∣∣∣ b̃′2〉 〈
b̃6

∣∣∣ b̃′3〉 〈
b̃6

∣∣∣ b̃′4〉 〈
b̃6

∣∣∣ b̃′5〉 〈
b̃6

∣∣∣ b̃′6〉



=



0 2 0 0 0 0

2 2 0 2 0 0

0 0 0 0 2 0

0 2 0 0 0 0

0 0 2 0 2 2

0 0 0 0 2 0

 .

We now argue the validity and accuracy of this quicker method. Firstly, we prove that

ground state basis is preserved under H = J
∑

iXiXi+1 + YiYi+1 + ∆ZiZi+1.

Proposition 4.2.1. Ground state basis b̃ is preserved under H = J
∑

iXiXi+1 + YiYi+1 +

∆ZiZi+1.

Proof. We first consider (XiXi+1 + YiYi+1) |xy〉i,i+1:

(XiXi+1 + YiYi+1) |01〉i,i+1 = |10〉+ (−i)2 |10〉 = 2 |10〉
(XiXi+1 + YiYi+1) |10〉i,i+1 = |01〉+ (−i)2 |01〉 = 2 |01〉
(XiXi+1 + YiYi+1) |00〉i,i+1 = |11〉+ (−i)2 |11〉 = 0

(XiXi+1 + YiYi+1) |11〉i,i+1 = |00〉+ (−i)2 |00〉 = 0

It is easy to see that (XiXi+1 + YiYi+1) will not change Hamming weights of |xy〉i,i+1. Then

we consider ZiZi+1 on |xy〉. Because Z will only change the symbol of a state, i.e. |xy〉 will

be changed to (−1)x⊕y |xy〉.

Since Hamming weight is not changed by H, the ground state basis b̃ is preserved under H.

End of proof.

We then prove that H̃ constructed in algorithm 3 is correct corresponding ground state

matrix of H, i.e. Hbi = H̃b̃i, where bi = b̃i in the bra-ket notation, but different in the vector

notation. For example, for bi = |001〉 = b̃i in the bra-ket form, we have bi = (0 1 0 0 0 0 0 0)T

and b̃i = (1 0 0 0 0 0)T in the vector form.
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Proposition 4.2.2. Hbi = H̃b̃i

Proof. In bra-ket notation, we have Hbi = Hb̃i and by the construction of H̃, we have

H̃b̃i = b̃′i. So it suffices to prove that Hb̃i = b̃′i in the bra-ket notation.

For convenience, we relabel b̃i as p again to avoid subscripts.

H |p̃〉 =

(∑
i

XiXi+1 + YiYi+1 + ∆ZiZi+1

)
|p1 . . . pn〉

=
∑
i

((XiXi+1 + YiYi+1) |p1 . . . pn〉+ ∆ZiZi+1 |p1 . . . pn〉)

=
∑
i

(
2 |p1 . . . pi pi+1 . . . pn〉+ ∆(−1)pi⊕pi+1 |p1 . . . pn〉

)
=

∑
i, s.t. pi 6= pi+1

(
2 |p1 . . . pi+1 pi . . . pn〉+ ∆(−1)pi⊕pi+1 |p1 . . . pn〉

)
=

 ∑
i, s.t. pi 6= pi+1

2 |p1 . . . pi+1 pi . . . pn〉

+ ∆(d− (n− 1− d)) |p1 . . . pn〉

=

(∑
j

2 |qj〉

)
+ ∆(d− (n− 1− d)) |p〉

= |p′〉

where the third equality comes from the proof of Proposition 4.2.1. The forth equality

comes from the fact that if pi = pi+1, then it will vanish under XiXi+1 + YiYi+1. So only

pipi−1 = 01 or 10 will be left and it follows that pi pi+1 = pi+1pi. The fifth equality comes

from the fact that there are d number of pairs 00 and 11 such that pi⊕pi+1 = 0 and n−1−d
number of pairs 01 and 10 such that pi ⊕ pi+1 = 1.

End of proof.

4.3 Construction by Density Matrix Renormalization

Group

4.3.1 Brief Introuction

The density matrix renormalization group (DMRG) we will introduce here is a numerical

variational algorithm that attempt to find an approximate Hamiltonians of a quantum many-

body system. It was first proposed White in 1992 [27] and it is one of the most efficient

techniques for 1D systems.
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The main problem of quantum system simulation is that the Hilbert space grows exponen-

tially with number of qubits n, which touches the limitation of classical computational power

very quickly. Even though compared to Algorithm 1, Algorithm 2 saves us a
√

2 factor since(
n
n/2

)
≈ 2n√

n
. As for DMRG, it is an iterative technique which aims to “collect” the most

important information for a target state. DMRG scales polynomially with respect to the

size of the active space, which can be determined by investigators. Detailed analysis on the

complexity on DMRG can be found in [25].

DMRG’s idea of increasing the system but not increasing the Hilbert space is typically based

on two steps: The number of qubits n increases and consequentially the Hilbert space grows

at the same time. Then the Hilbert space is truncated to its original size keeping the system

size invariant. We now describe DMRG more detailedly with an example of 1D XXZ model

below based on the reference [20].

4.3.2 Single Enlargement and Truncation in DMRG

We first describe how the single enlargement and truncation step works in DMRG theoreti-

cally and will give an example later to better explain this step.

The elementary unit in the step is a site with dimension D, i.e. a qubit for our interest. The

step usually is given an input m, which is the number of states kept.

1. We start with a block B(l,m), consisting of number of sites l where l is the minimum

number of qubits such that 2l > m. We also have a Hamiltonian HB associated with

B(l,m), with basis {|b1〉 , . . . , |bm〉}.

2. The block is enlarged by adding another site to it and they then form the enlarged

block Be with dimension (m × D) × (m × D). The basis now is {|bek〉 = |bi〉 ⊗ |dj〉},
where {|d1〉 , . . . , |dD〉} is the basis of the new added site, and k = (i− 1)D + j.

3. We now form the superblock Hamiltonian, which consists of two enlarged blocks con-

nected to each other. The left enlarged block is the one we get in previous step and

the right one is the reflected enlarged block. Then the target state (ground sate for

our interest) of the superblock is computed and we expressed that in the form

|Ψ0〉 =
m×D∑
i=1

m′×D∑
i=1

aij |bei 〉 ⊗
∣∣∣b′ej 〉 , (4.1)

where the prime refers to the parameters associated the right enlarged block. For a

infinite system, we usually have M ′ = m while for a finite system, we have m′ = m or

m = n−m′ + 1.
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4. We then use the ground states to form a density matrix with entries:

ρii′ =
m′×D∑
i=1

aija
∗
i′j. (4.2)

We denote the eigenstates of ρ as |uα〉 (α = 1, . . . ,m ×D) and eigenvalues wα. Note

that these eigenvalues represent the probability of the system being in the state |uα〉
given that the universe is in the state |Ψ0〉. Since we want to truncate He to only stay

with several important states and neglect all others to keep the Hilbert space constant

(size m), we order the |uα〉 by their eigenvalues in a decreasing order and only use the

first m eigenvectors. We now form the transformation matrix O with size m× (m×D)

with these selected good eigenvectors.

5. We now construct the truncated Hamiltonian for the enlarged block, which then will

be denoted as B(l + 1,m):

HB(l+1,m) = OHeO
†. (4.3)

Note that besides Hamiltonians being stored and updated during the process, we also need

to keep track of operators representing the sites at the border of the block. These operators

mostly give instruction on the interaction among blocks and sites. They also need to be en-

larged when the block is enlarged, and truncated when the block Hamiltonian is truncated.

We now give a detailed example to show how all the procedures work.

Given a 1D XXZ model with n qubits without external field, and we pick m = 2 so that

the size of the approximated Hamiltonian should be limited to 2 × 2. Here is how single

enlargement and truncation procedure works for such model.

1. We start from a block B(1, 2) of a single site. Note that the possible states of the

single site are |b1〉 = |0〉 and |b1〉 = |1〉. For one isolated site without external fields,

the Hamiltonian HB associated is a 0 matrix. We have operators associated as Sxb = X,

Syb = Y and Szb = Z.

2. To build the enlarged system, another site is added with the same basis: |d1〉 = |0〉
and |d1〉 = |1〉. Then the basis of the enlarged block is (e stands for enlarged)

|be1〉 = |00〉
|be2〉 = |01〉
|be3〉 = |10〉
|be4〉 = |11〉

.

Now we have block B(2, 4) instead of the original B(1, 2). The Hamiltonian He for

B(2, 4) is no longer a 0 matrix and it should describe the interactions between two
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sites (qubits) in B(2, 4) based the definition of Hamiltonian for XXZ model:

He = HB ⊗ Id +H

= HB ⊗ Id −
J

2
(Sxb ⊗ Sxd + Syb ⊗ S

y
d + ∆Szb ⊗ Szd)

= HB ⊗ Id −
J

2
(Xb ⊗Xd + Yb ⊗ Yd + ∆Zb ⊗ Zd)

=

(
0 0

0 0

)
⊗
(

1 0

0 1

)
− J

2

[(
0 1

1 0

)
⊗
(

0 1

1 0

)
+

(
0 −i
i 0

)
⊗
(

0 −i
i 0

)]
− J∆

2

(
1 0

0 −1

)
⊗
(

1 0

0 −1

)

= −J
2


∆ 0 0 0

0 −∆ 2 0

0 2 −∆ 0

0 0 0 ∆


We also need to update our operators Sxb , S

y
b , S

z
b as

(Sxr )e = Ib ⊗ Sxd =

(
1 0

0 1

)
⊗
(

0 1

1 0

)
,

and similarly for (Syr )e and (Szr )e .

3. We now construct a superblock by taking the enlarged block as the left block and

connecting it to another enlarged block on the right. The right enlarged block is the

same as the left block, only spatially reflected, which means that the qubit last added

to the left block is connected to itself in the right block. The basis for this superblock
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is given by:


|be1〉
|be2〉
|be3〉
|be4〉

⊗

∣∣b′e1 〉∣∣b′e2 〉∣∣b′e3 〉∣∣b′e4 〉

 =


|00〉
|01〉
|10〉
|11〉

⊗

|00〉
|01〉
|10〉
|11〉

 =



|0000〉
|0001〉
|0010〉
|0011〉
|0100〉
|0101〉
|0110〉
|0111〉
|1000〉
|1001〉
|1010〉
|1011〉
|1100〉
|1110〉
|1111〉



=



|bs1〉
|bs2〉
|bs3〉
|bs4〉
|bs5〉
|bs6〉
|bs7〉
|bs8〉
|bs9〉
|bs10〉
|bs11〉
|bs12〉
|bs13〉
|bs14〉
|bs15〉
|bs16〉



.

Our target state is the ground state and so we only focus on 6 states with same number

of 0s and 1 which belong to the ground space (similar to the idea in Algorithm 2):∣∣∣bs(0)
1

〉
≡ |bs4〉 = |be1〉 ⊗ |b′4e〉∣∣∣bs(0)

2

〉
≡ |bs6〉 = |be2〉 ⊗ |b′2e〉∣∣∣bs(0)

3

〉
≡ |bs7〉 = |be2〉 ⊗ |b′3e〉∣∣∣bs(0)

4

〉
≡ |bs10〉 = |be3〉 ⊗ |b′2e〉∣∣∣bs(0)

5

〉
≡ |bs11〉 = |be3〉 ⊗ |b′3e〉∣∣∣bs(0)

6

〉
≡ |bs13〉 = |be4〉 ⊗ |b′1e〉

The Hamiltonian of the superblock consists of three parts: the left enlarged block,

the right enlarged block (i.e. the reflected left enlarged block) and the connecting

interactions between these two blocks:

Hs = He ⊗ I ′e + Ie ⊗H ′e −
J

2

(
(Sxr )e ⊗ (Sxr )′e + (Syr )e ⊗ (Syr )′e + ∆ (Szr )e ⊗ (Sxz )′e

)
,

where the prime refers to the operators on the right enlarged block. We calculated this
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Hs in the basis
∣∣∣bs(0)
i

〉
:

−J
2



∆ 0 2 0 0 0

0 −∆ 2 2 0 0

2 2 −3∆ 0 2 0

0 2 0 −3∆ 2 2

0 0 2 2 −∆ 0

0 0 0 2 0 ∆

 .

If we take J = −1/2 and ∆ = 1, then the ground state energy of H0
s is E0 = 1/4(3 +

2
√

3) and the ground state eigenvector is

|ψ0〉 =



1

1 +
√

3

−2−
√

3

−2−
√

3

1 +
√

3

1


=



a14

a22

a23

a32

a33

a41

 ,

where the second equality comes from Equation 4.1 the correspondence basis
{∣∣∣bs(0)

i

〉}
.

4. We now construct the density matrix using Equation 4.2

ρ = (aij) =


1 0 0 0

0 (1 +
√

3)2 + (−2−
√

3)2 2(1 +
√

3)(−2−
√

3) 0

0 2(1 +
√

3)(−2−
√

3) (1 +
√

3)2 + (−2−
√

3)2 0

0 0 0 1



=


1 0 0 0

0 11 + 6
√

3 −2(5 + 3
√

3) 0

0 −2(5 + 3
√

3) 11 + 6
√

3 0

0 0 0 1

 .

We then calculate eigenvalues and eigenvectors of ρ to do the truncation step. Since we

pick m = 2, we only pick two eigenvectors that correspond to largest two eigenvalues

to construct the transformation matrix in Equation 4.3, which is

O =

(
0 1 −1 0

1 0 0 0

)
.

5. This is the final step in this first procedure. We get the truncated Hamiltonian with
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dimension m×m we will use in the iterative step for the enlarged bock:

HB(2,2) = OHeO
† =

1

4

(
−3 0

0 1

)
.

We also get the truncated operators using this transformation matrix too:

Sxr = OSxrO
†,

and similar for Syr and Szr .

4.3.3 The Infinite and Finite System DMRG

Given the single enlargement and truncation step in DMRG, the rest of DMRG is mostly

about iterations. Here is the Inifite System DMRG:

1. Grow the chain normally to a size l in which its Hilbert space dimension is just larger

than m, the number of states to be kept. (m < 2l) We treat this as our first enlarged

block.

2. Implement procedures in Section 4.3.2 to enlarge the left block size to l + 1 using the

single step described in previous section: Form the superblock, calculate the density

matrix and using transformation matrix to truncate the enlarged block. This truncated

left enlarged block then will be used as the block for the next iteration.

3. Continue with step 2 until convergence is reached.

The Finite System DMRG is similar to the infinite one. The difference is that in the infinite

case the right enlarged block used in the construction of the superblock is the same size as

the left enlarged block. But in the finite case, the right enlarged block always complements

the left one to the total number of qubits n and thus becomes shorter. We deal with the

finite case by sweeping over the system again when the right block has only 1 qubit and so

this again and again until convergence is achieved. Detailed explanation about the Infinite

and Finite System DMRG are explained in [20]. Code for the implementation can be found

on simple-dmrg.

Using DMRG, we will not get Hamiltonian scaling with O(2n) which is the main problem in

quantum simulation. After we get the approximate Hamiltonian with dimension m×m, we

can get the ground state and get Schmidt coefficients associated to calculate approximated

entanglement entropy. We can set m small to compute approximate entropy very quickly,

which would be very beneficial for the investigation of the area law.

https://simple-dmrg.readthedocs.io/en/latest/index.html
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Area Law on Quantum Models

5.1 XXZ Model

5.1.1 Entropy Entanglement vs. Position of the Cut

We investigated how the position of the cut i influences the entanglement entropy. Theoret-

ically it should not be significantly influence the entropy very much as otherwise we cannot

prove the area law only for the middle cut. So for the investigation below, we expect that

the entropy does not change when we vary cut i. Note that for an odd number of qubits,

there are two ground states because intuitively for n qubits, the ground space can be formed

by (n + 1)/2 0s and (n− 1)/2 1s or (n− 1)/2 0s and (n + 1)/2 1s. And we just arbitrarily

choose one to evaluate its entanglement entropy, which any of then would follow an area law

as described Section 2.5 and [18]. We set J = 1 (as it does not matter what the value of J is

since we only consider normalized state) and here are the results with dashed lines represent

odd # qubits and others represent even # qubits.
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Figure 5.1: Entropy Entanglement vs. Position of the Cut for XXZ Model

We choose ∆ = 2, 5, 10, 49 for investigation here and for readers who are interested in seeing

more, code is provided is Appendix B. It is clearly shown that independent of cut i, entropy

is nearly stable and bounded by certain constant. With ∆ gets larger, the stability is clearer,

such that entropy stays around 1 and 0 for even and odd number of qubits respectively.

So we can conclude that XXZ model’s entanglement entropy appears to follow area law in-

dependent of which cut we choose to separate the system.

5.1.2 Entropy Entanglement vs. Number of Qubits

Here we investigate the relationship between entanglement entropy and number of qubits n.

Theoretically as mentioned before, since when |∆| > 1, XXZ model is a gapped system and

so its 1D version should follow an area law. In the following experiment, we set still J = 1

and let cut i be the middle cut.

We expect to see that with 1 < ∆ < 99 (assuming that ∆ > 99 to be large enough for XXZ

model to approach the classical Ising model), entropy is always bounded by some constant

as n increases. However, by the limitation of the computation power, we can only calculate

up to n = 14. So here we expect to see entanglement entropy does not increase much so

that we can see that the entropy appears to be bounded by a constant. Results generated

by Algorithm 3 are in Figure 5.2 .
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Figure 5.2: Entropy Entanglement vs. Number of Qubits for XXZ Model with 1 < ∆ < 99

For 1 < ∆ < 99, it is clear that entropy is very different for odd number of qubits and

even number of qubits. For odd number of qubits, the entanglement entropy is closer to 0,

especially when ∆ ≥ 3, while the entropy is varying around 1. But for both of them, there

is no significant increasing trend in the entanglement growth, so we can vaguely conclude

that the entropy is bounded by O(1), which follows the theory.

With |∆| ≤ 1, it is more obvious that entropy seems to follow a period trend with period

= 4 and is slightly increasing (the increase is more obvious than that of larger ∆’s). The

result slightly reflects the logarithmic increase trend described in Section 3.1.

Figure 5.3: Entropy Entanglement vs. Number of Qubits for XXZ Model with ∆ −→∞

For readers who are interested in the behavior of entanglement entropy when ∆ −→ ∞,

results are shown in Figure 5.3. As under this condition, the XXZ model approaches the
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classical Ising model, and so we expect it not to be exhibiting quantum behaviour, which

means that the entanglement entropy should be 0. From the graph, we could see that when

∆ becomes larger, entanglement entropy vanishes at smaller number of qubits. Although

the vanishing is what we expect, the phenomenon does not happen gradually, but rather

happens simultaneously when some point is triggered. This seems mysterious and it left to

the reader to investigate more on it.

5.1.3 Schmidt Coefficients Value Distribution

Analysis

It is natural to ask the question that how Schmidt coefficients are distributed. We would like

to see that for n qubits, these 2n coefficients follow certain trend or function. If that is the

case, for a certain system, we can generate 2n numbers from the function and treat them as

Schmidt coefficients to calculate entanglement entropy. It would save much energy to calcu-

late entanglement entropy, and would be very beneficial for investigating area law in general.

Take ∆ = 5 as an example since in Figure 5.2, the entanglement entropy is stable at this

∆ and is not large enough for the model to approach Classical Ising model. The log plot of

the Schmidt Coefficients of the ground state of the XXZ model with ∆ = 5 is given below.

Note that the x-axis is just the order of the Schmidt Coefficients in decreasing order, i.e. the

largest Schmidt Coefficient is with x = 1.

Figure 5.4: Schmidt Coefficients Value Distribution for XXZ Model with ∆ = 5

From the Figure 5.4, it can be deduced that Schmidt Coefficients seems to decrease exponen-

tially (the middle of their log plots are close to be linear). We now take the assumption of
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the exponential decay, and investigate how the slope of these log plots change with number

of qubits n. We choose ∆ = 3, 5, 7, 9, 11, 13, 15, 17 as representatives.

Figure 5.5: The Slope of Schmidt Coefficients Value Distribution vs. Number of Qubits for

XXZ Model

Prediction

It could be seen that these functions fit the slope graph very well and we would like use

these functions to predict the slope for n = 14. Still take ∆ = 5 as an example. Since from

Figure 5.5, it can be seen that odd and even cases follow different log functions, as we want

to predict n = 14, we only pay attention to the even cases for ∆ = 5.
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Figure 5.6: The Slope of Schmidt Coefficients Value Distribution vs. Number of Qubits for

XXZ Model with ∆ = 5

In Figure 5.6, the blue line represents the fitting function based on n = 6, 8, 10, 12 and the

blue point at n = 14 is −0.220439 and represents the predicted slope for Schmidt Coeffi-

cients value distribution for n = 14. The red point at n = 14 is −0.255295 and represents

the real slope and red line represents real fitting function based on n = 6, 8, 10, 12, 14. The

discrepancy between predicted and real slope is 0.0348554, which is not small enough.
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Figure 5.7: The Predicted and Real Slope of Schmidt Coefficients Value Distribution vs. ∆

for XXZ Model with n = 5

Figure 5.7 shows the predicted and real slopes of the log of Schmidt Coefficients Value Dis-

tribution for n = 14 and the discrepancies are visualized for different ∆. It can be seen that

for some ∆, the discrepancies are larger and even with different signs.

The imperfection of the prediction method is mainly caused by the following reason: Error:

In Figure 5.4, it is clear that when n increases, the log plot of Schmidt Coefficients is more

bent instead of being linear. It follows that the linear fitting function is less accurate for

predicting relatively larger n. More plots like 5.4 are provided in Appendix A and it is easy

to see that for some ∆s the exponential decay assumption about the Schmidt Coefficients

distribution is not accurate (the middle of these log plots are not linear).

Another thing to point out here is that we state in the beginning of this section that the

investigation on the Schmidt Coefficients serves to better investigate the area law. As intro-

duced in Chapter 1, the Von Neumann entropy for a bipartite ground state with the middle

cut is calculated by

S =
2bn/2c∑
i=1

λ2
i log λ2

i ,

where λi represents Schmidt Coefficients. The equation shows that larger Schmidt Coeffi-

cients contribute more to entanglement entropy and therefore it would be more beneficial to

investigate larger Schmidt Coefficients’ values, instead of the middle values. But in Figure

5.7, it seems that the left part of Schmidt Coefficients (larger coefficients) does not seem

to follow certain simple function and might be hard to find fitting function. Readers who

are interested in it are very welcome to investigate more on larger Schmidt Coefficients
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distribution or even all Schmidt Coefficients distribution.

5.2 XXZ-Variant Model

5.2.1 Entropy Entanglement vs. Number of Qubits

As described in 3.2, the ground-state space of the Hamiltonian of XXZ Variant model has

degeneracy n− 1, which is not a constant, and so that it is not known for sure if an area law

holds.

Figure 5.8: Entropy Entanglement vs. Number of Qubits for XXZ Variant Model

As proved in [15], the Hamiltonian for this model is gapped when q 6= 1 and so we marked

q = 1 case in orange in Figure 5.8. It is obvious that entropy entanglement of the ground

state of XXZ Variant model is not stable, although it is all below 1 for all q 6= 1. So we

can be optimistic that this model actually follows an area law, although its instability casts

some doubts on this point of view.

Since the ground state of the model is not guaranteed to follow the area law, the investigation

of this model will be ended here. The information here is to provide the an example about

the investigation on a frustration-free Hamiltonian.
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5.3 AKLT Model

5.3.1 Entropy Entanglement vs. Number of Qubits

As described in 3.3, AKLT model is both frustration free and has constant-fold degenerate

ground-state space. So it is should satisfy the area law and it is the case exactly proved in

Section 2.

Figure 5.9: Entropy Entanglement vs. Number of Qubits for AKLT Model

In Figure 5.9, the number of qubits investigated only ranges from n = 2 to n = 7 (limited

by the computational power as the dimension would be 3n). The entropy is also not very

stable with some variations and so the graph is not a good verification that AKLT follows

area law.

Since the investigation is too limited by the computational power, the investigation of this

model will also be ended here. The information here is to provide the an example about the

investigation on a best-fit Hamiltonian (both frustation-free and has constant-fold ground

state degeneracy) for proofs in Section 2.





Chapter 6

Quasi-Approximate Ground State

Projector

6.1 Construction of QAGSP

As introduced in Section 2.3.2 and 2.3.5, a very common operator of interest given is

K = I − H
‖H‖ . K

t would give a good value of ∆ with t increases, but leads to an exponential

increase in Schmidt rank and hence this operator is not useful for the proof. However, we

would like to study how the distribution of Schmidt coefficients related with t when Kt is

applied to a random state. If there are some general trends in the Schmidt distributions with

t increases, then it would be beneficial for us to get an idea of ground state entanglement

entropy without calculating the ground state of the corresponding system explicitly.

By definition of AGSP, it aims to map a random state to the ground state of a certain

quantum system, with bounded Schmidt rank. In this part, we would like to generalize an

AGSP in terms of the identity matrix I, and the corresponding Hamiltonian H of the system

(K = I − H
‖H‖ only works for frustration free Hamiltonian). We ignore the requirement of

bounded Schmidt rank as it would not be satisfied using projectors like K = I− H
‖H‖ . We call

such project as QAGSP, standing for Quasi-Approximate Ground State Projector. Here we

only want to construct AGSPs that will map ground state to ground state, and will vanish

on states orthogonal to ground states, and it follows that they will map any random state

to ground state(s). Definition of QAGSP is given below:

Definition 3. An operator K is said to be a ∆-QAGSP if the following conditions hold:

1. Ground space Invariance: For any ground state |Γ〉, K |Γ〉 = |Γ〉.

2. Shrinking: If
∣∣Γ⊥〉 is any state orthogonal to the ground space, then K

∣∣Γ⊥〉 is also

orthogonal to the ground space, and moreover ||K
∣∣Γ⊥〉 ||2 ≤ ∆.

Now we show how we construct QAGSP for different models based on their eigensystems.

Let the smallest eigenvalue be a and largest eigenvalue be b > 0 (we do not consider b < 0
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case here), and note that ‖H‖ is the matrix norm which means the largest absolute value

of all eigenvalues here. We discuss the following cases of Hamiltonian to investigate in the

following subsections.

6.1.1 Frustration Free: a = 0

Under this case, we can simply have K = I − H
‖H‖ as described in Section 2.3.5, such that

K |Γ〉 = |Γ〉 and K
∣∣Γ⊥〉 = ∆

∣∣Γ⊥〉 with |∆| < 1. Therefore, for a random state |ψ〉, we can

have

Kt |ψ〉 = Kt

(
c1 |Γ〉+

∑
i

ci
∣∣Γ⊥i 〉

)
= ck1 |Γ〉+

∑
i

ci∆
k
i

∣∣Γ⊥i 〉
≈ ck1 |Γ〉 ,

where the last approximation comes from the fact that ∆t ≈ 0 as for large enough t. After

normalization, we would have Kt |ψ〉 ≈ |Γ〉.

6.1.2 Positive Ground State Energy: a > 0

Now we consider the AGSP K = 1
1−a

b

(
I − H

‖H‖

)
, and we will have

K |Γ〉 =
1

1− a
b

(
I |Γ〉 − H |Γ〉

‖H‖

)
=

1

1− a
b

(
1− a

b

)
|Γ〉 = |Γ〉 .

For states orthogonal to the ground state, we have

K
∣∣Γ⊥〉 =

1

1− a
b

(
I
∣∣Γ⊥〉− H

∣∣Γ⊥〉
‖H‖

)
=

1− λ
b

1− a
b

|Γ〉 = ∆
∣∣Γ⊥〉 ,

where |∆| < 1 as λ > a.

Then similar to the above case, the QAGSP Kt will map a random state to the ground state.

6.1.3 Negative Ground State Energy: a < 0 and |a| < b

The case is similar to the case of a < 0, and so we consider the AGSP K = 1
1−a

b

(
I − H

‖H‖

)
again. It is the same for the ground state, but for states orthogonal to the ground state, we

have

K
∣∣Γ⊥〉 =

1

1− a
b

(
I
∣∣Γ⊥〉− H

∣∣Γ⊥〉
‖H‖

)
=

1− λ
b

1 + |a|
b

|Γ〉 = ∆
∣∣Γ⊥〉 ,
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where |∆| < 1 as either λ > 0 or |λ| < |a|. Then as expected, the AGSP Kt will map a

random state to the ground state.

6.1.4 Negative Ground State Energy: a < 0 and |a| > b

For the last case, we consider the AGSP K = 1
2

(
I − H

‖H‖

)
, and we will have

K |Γ〉 =
1

2

(
I |Γ〉 − H |Γ〉

‖H‖

)
=

1

2

(
1− a

|a|

)
|Γ〉 =

1

2

(
1 +
|a|
|a|

)
|Γ〉 = |Γ〉 .

For states orthogonal to the ground state, we have

K
∣∣Γ⊥〉 =

1

2

(
I
∣∣Γ⊥〉− H

∣∣Γ⊥〉
‖H‖

)
=

1− λ
|a|

2
|Γ〉 = ∆

∣∣Γ⊥〉 ,
where |∆| < 1 as −|a| < λ < b < |a| and then −1 < λ

|a| < 1. Then as expected, the AGSP

Kt will map a random state to the ground state.

6.2 Ground State Convergence

As stated above, we construct a QAGSP for the XXZ model, which is actually always

Kt =
(

1
1−a

b

(
I − H

‖H‖

))t
. We first investigate how large t should be to make Kt an AGSP.

Since for odd number of qubits, the ground space has dimension 2 while for even number of

qubits, the ground space only has dimension 1, it is easy to set a ∆ for even cases and verify

that Kt has mapped a random state to the ground state.

We choose ∆ = 10−7 as it is the numpy.isclose tolerance. t that would make Kt satisfy

QAGSP definition for different number of qubits n is given below. In other words, t given

in Table 6.1 is smallest integer multiple of 10 that has Kt |ψ〉 − |Γ〉 ≤ ∆.

n t

2 20

4 40

6 70

8 90

10 120

Table 6.1: t vs. n such that Kt is a QAGSP

Note that even though the starting product state is random, the value t that makes it

mapped to the ground state is stable and always be the number shown in Table 6.1. For
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even 2 ≤ n ≤ 10,

t ≈ 12n

would always make Kt a good QAGSP. However, even though t would be this large to make

Kt a good QAGSP, the entropy would be stable with some smaller t′. This is shown in

Figure 6.1. To show that how much influence made by randomness on t′, we have three rows

with different randomly chosen product state. We still take ∆ = 5 in XXZ model (not the

same ∆ in QAGSP) as an example.

Figure 6.1: Entanglement Entropy vs. t for QAGSP of XXZ Model with ∆ = 5

Note that the entropy starts from 0 since a random product state has only 1 Schmidt

Coefficient 1 and so has entanglement entropy 0. By comparing three rows in Figure 6.1,

it could be seen that even though there are some variances in t′ at which the entanglement

entropy becomes stable, the entropy is always stable at

t′ =
1

2
t ≤ 6n.

6.3 Schmidt Coefficients Value Distribution

6.3.1 Theory on Number of Non-Zero Schmidt Coefficients

Note that a random product state has only 1 Schmidt Coefficient 1 and it can be verified in

Figure 6.1 that entropy starts from 0.

The number of non-zero Schmidt Coefficients will grow until 2bn/2c as K is kept applying on

the random states. We also claim that |{λi}| ≤ 5t for XXZ model, where {λi} represents

the set of Schmidt Coefficients.
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Proposition 6.3.1. Let {λi} represents the set of Schmidt Coefficients of Schmidt decom-

position of Kt |ψL〉⊗|ψR〉, where |ψL〉 and |ψR〉 are two random states. Then for XXZ model

with n qubits,

|{λi}| ≤ min{5t, 2bn/2c}.

In other words, Schmidt number is smaller than or equal to 5t.

Proof.

First, it is trivial that Schmidt number of a state should be ≤ 2bn/2c with the middle cut

given by the procedure of Schmidt coefficients.

Second, for whatever K in Section 6.1 we finally use (even though for XXZ, we use the third

one), K would always look like c
(
I − H

‖H‖

)
, where c is some scalar which has no influence

on the Schmidt number. Also I and ‖H‖ also does not influence the Schmidt number. So

it suffices to consider how the Schmidt number of H t |ψL〉 ⊗ |ψR〉 grows with t and if that is

at most 5t, we are done.

H |ψL〉 ⊗ |ψR〉 = −J
2

n−1∑
i=1

(XiXi+1 + YiYi+1 + ∆ZiZi+1) |ψL〉 ⊗ |ψR〉

= (HL |ψL〉)⊗ |ψR〉

− J

2

(
X(n−1)/2X(n+1)/2 + Y(n−1)/2Y(n+1)/2 + ∆Z(n−1)/2Z(n+1)/2

)
|ψL〉 ⊗ |ψR〉

+ |ψL〉 ⊗ (HR |ψR〉)

= (HL |ψL〉)⊗ |ψR〉 −
J

2
X(n−1)/2 |ψL〉 ⊗X(n+1)/2 |ψR〉 −

J

2
Y(n−1)/2 |ψL〉 ⊗ Y(n+1)/2 |ψR〉

− J

2
∆Z(n−1)/2 |ψL〉 ⊗ Z(n+1)/2 |ψR〉+ |ψL〉 ⊗ (HR |ψR〉)

Given by above equation, for t = 1, H t = H maps a product state to 5 product states. Then

H2 |ψL〉⊗|ψR〉 = H ◦(H |ψL〉⊗|ψR〉) will first map a product state to five product states and

then map each of these five states to five states. Some of these 25 states might combine, and

therefore H2 will map a product states to at most 25 states. Inductively following this idea,

H t will map a product state to at most 5t products. Formally, if we Schmidt decompose

H t |ψL〉 ⊗ |ψR〉, we will get

|{λi}| ≤ 5t,

which finishes the proof.

End of proof.

The effect of Proposition 6.3.1 will be noticed clearly in figures in the next section.
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6.3.2 Analysis on Schmidt Coefficients Value Distribution

We now investigate the Schmidt coefficients value distribution of Kt |ψL〉 ⊗ |ψR〉 vs. t. Still

take ∆ = 5 as an example. We focus on n = 10 case since it is the largest number of qubits

we can investigate by the limitation of the computational power. We evaluate Schmidt

coefficients for 0 ≤ t ≤ 60 since the entropy becomes stable after this t.

Figure 6.2: Schmidt Coefficients Value Distribution of QAGSP for XXZ Model with ∆ = 5

In Figure 6.2, Proposition 6.3.1 is clearly shown. For t = 0, there is only 1 non-zero

Schmidt coefficient as expected. For t = 1, there are 5 non-zero Schmidt coefficients as

expected. For t = 2, there are 16 ≤ 25 non-zero Schmidt coefficients as expected. For t ≥ 3,

53 = 125 ≥ 25 = 32 and so all Schmidt coefficients are non zero as shown in the Figure.

Similar to Figure 6.2, it can be deduced that Schmidt coefficients seems to decrease expo-

nentially (the middle of their log plots are close to be linear). We now take the assumption

of the exponential decay again, and investigate how the slope of these log plots change with

number of qubits n. All figures after correspond to log plots for Schmidt coefficients. Note

that such assumption has same disadvantages as explained in the end of Section 5.1.3.
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Figure 6.3: The Slope of Schmidt Coefficients Value Distribution of QAGSP vs. t for XXZ

Model

The Plot with n = 10 in Figure 6.3 represents the slope of these value distributions in Figure

6.2. It is reasonable that after some t, the slope converges, which is because the Schmidt

coefficients at that t becomes closer to the ground state and tends to be stable.

We noticed that such t is around 10. This makes us wonder whether the slope at t = 10

follows some rule and if that is the case, we can predict the slope at t = 10 for n = 12.

Then since the slope becomes stable at t = 10, we can use this slope to deduce the slope

of Schmidt coefficients value distribution of Kt |ψL〉 ⊗ |ψR〉 ≈ |Γ〉, where |Γ〉 represents the

ground state. This prediction is the same as what we did in Section 5.1.3, i.e. to predict the

slope of Schmidt coefficients value distribution for larger number of qubits n.

The experiment of the idea on the slope at t = 10 vs number of qubits n is given below:

Figure 6.4: The Slope of Schmidt Coefficients Value Distribution of QAGSP vs. n for XXZ

Model at t = 10
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Unfortunately, there is no obvious relationship between these slopes at t = 10, which makes

our hope not so achievable. This is just an idea of what we can do to predict Schmidt

coefficients related information for larger n. Readers who are interested in this are welcome

to implement faster algorithms like DMRG introduced in Section 4.3 to generate more qubits

and that might give more ideas on the relationship, which would be beneficial for predictions.



Conclusion

The von Neumann entanglement entropy of ground states in XXZ model is verified to follow

a 1D area law, i.e. the entropy is O(1). The entropy bound is verified to be a constant for

up to 14 qubits with 1 < ∆ < ∞, independent of the position of the cut. The Schmidt

coefficients of ground states of XXZ model in decreasing order are investigated to be largely

likely to follow exponential decay with up to 13 qubits. Slopes of logplot of the Schmidt

coefficients value distribution are studied to predict the slope of the logplot of Schmidt coef-

ficients distribution of 14 qubits. Discrepancies are within 0.1 for 2 ≤ ∆ ≤ 80, and is mostly

caused by the fact that Schmidt coefficients no longer follow exponential decay with more

qubits and larger ∆s.

Quasi-approximate ground state projectors Kt =
[
c
(
I − H

‖H‖

)]t
, where c is some constant

depending on the eigenvalues of quantum systems, is proposed to study the Schmidt coeffi-

cients and entanglement entropy. QAGSP is aimed to map random product states to ground

states gradually with increased t. Schmidt coefficients distribution of Kt |ψ〉 are shown to

be also largely likely to follow exponential decay for even number of qubits up to 10. Slopes

of log plot of the Schmidt coefficients value distribution are also studied, but sample sizes

are too small (n = 2, 4, 6, 8, 10) to give instructive relations between slopes and number of

qubits n.

4.1 Possible Improvements

The first thing to note is that Algorithm 1 and 2 for large ∆s (∆ ≥ 10000) give different

von Neumann entropy and in Section 5.1, we use Algorithm 2 to investigate 1D area law.

The Hamiltonian A2 produced by Algorithm 2 is proved to be Hamiltonian A1 produced by

Algorithm in ground state basis, i.e. A2 = PA1P
†, where P is the change of basis matrix

from full basis to ground state basis. So either the numpy calcualtion of ground state of

a Hamiltonian or the Schmidt decomposition will cause the discrepancies. It is worth of

putting efforts to study the reason of the discrepancy of entropy calculated by these two

algorithms, which is not investigated in this paper as we only care about small ∆s.

The second thing is what is explained in Section 4 that both Algorithm 1 and 2 we use for

investigation both generate Hamiltonians of size asymptotically O(2n), which is very slow
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for computation. DMRG algorithm proposed in 4.3 generates approximate Hamiltonians

and other stored information that scale polynomially with respect to the size of the active

space, which can be determined by investigators. Using DMRG instead of Algorithm 1 and

2 will make it possible to investigate entropy and Schmidt coefficients distribution of more

qubits. It is then more possible to see the how Schmidt coefficients are distributed and how

these distributions might vary with number of qubits.

Schmidt coefficients value distribution analysis in both Section 5.1.3 and Section 6.3 have two

problems: lack of sample size (the investigation is only on number of qubits up to n = 14)

and incorrect focus on the middle values of Schmidt coefficients. Detailed explanation of

these two problems are in the end of Section 5.1.3 and these imperfection can be improved

by implementing DMRG to increase number of qubits.

Both XXZ Variant model and AKLT model introduced in Section 3.2 and Section 3.3 are

good candidates for investigating 1D area law. XXZ Variant model is good for investigating

how the entanglement entropy increase with number of qubits for non constant-fold degen-

eracy. AKLT model is a good candidate for investigate 1D area law proof in [6] as it is both

gapped and frustration free. Note that in [28], it is showed that the von Neumann entropy is

saturated with the number of qubits goes to infinity theoretically. But Figure 5.9 does not

show this saturation. So it might be beneficial for readers of interest to verify the 1D area

law on AKLT model.



Appendix A

Schmidt Coefficients Value

Distribution for Larger ∆s

In Section 5.1.3, we argue that one of the imperfection of the prediction method is caused

by the fact: when n increases, the log plot of Schmidt Coefficients is more bent instead of

being linear. It follows that the linear fitting function of the log plot of Schmidt coefficients

is not very accurate. We show log plots of Schmidt coefficients value distribution for XXZ

model below, which is similar to Figure 5.4, but with larger ∆s.

Figure A.1: Schmidt Coefficients Value Distribution for XXZ Model with ∆ = 15
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Figure A.2: Schmidt Coefficients Value Distribution for XXZ Model with ∆ = 20

It can be easily seen in Figure A.1 and Figure A.2 that when n increases, the log plots of

Schmidt coefficients are very bent and no longer fit a straight line.



Appendix B

Code

Code used for the thesis for generating plots and investigation is provided here:

https://github.com/BiuSky7777/Reed2020-Thesis/tree/master/Code.

https://github.com/BiuSky7777/Reed2020-Thesis/tree/master/Code
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